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Abstract. We develop a second-order extension of intuitionistic modal logic,

allowing quantification over propositions, both syntactically and semantically.
A key feature of second-order logic is its capacity to define positive connectives

from the negative fragment. Duly we are able to recover the diamond (and its

associated theory) using only boxes, as long as we include both forward and
backward modalities (‘tense’ modalities).

We propose axiomatic, proof theoretic and model theoretic definitions of

‘second-order intuitionistic tense logic’, and ultimately prove that they all
coincide. In particular we establish completeness of a labelled sequent calculus

via a proof search argument, yielding at the same time a cut-admissibility

result. Our methodology also applies to the classical version of second-order
tense logic, which we develop in tandem with the intuitionistic case.

1. Introduction

1.1. Background and motivation. Second-order logic extends first-order logic
by allowing quantification over predicates. It has become a standard tool in math-
ematical and computational logic, including in type theory and programming lan-
guages (e.g. [Gir72, Rey74, Mil78, Par97]), computability and complexity (e.g.
[Sim09, DM22b, Bus86, CN10]), and, more recently, knowledge representation in
artificial intelligence (e.g. [BH15, BH16, BHK18, BBW06]). The metalogical and
proof theoretic foundations of second-order logic have posed significant challenges
to logicians over the last century. Completeness for standard (or full) semantics,
where properties vary over the full powerset, fails, necessitating the more general
Henkin semantics [Hen50]. The corresponding theories typically admit the compre-
hension axiom, requiring impredicative techniques for metalogical analysis. Indeed
cut-admissibility of second-order logic, known as Takeuti’s conjecture [RS24], re-
mained an open problem since the ’30s, before being resolved in the late ’60s by
seminal works of Tait [Tai66], Prawitz [Pra68a, Pra68b], Takahashi [Tak67] and
Girard [Gir72].

Over intuitionistic logic, second-order quantification notably allows the encoding
of positive connectives by the negative fragment. For example A ∨ B is logically
equivalent to ∀X((A → X) → (B → X) → X). This is in stark contrast to the
first-order setting, where connectives are infamously intuitionistically independent.
In this work we apply the second-order methodology to modal logic, allowing us
to recover a theory of positive modalities (^s) from the negative (□s) over an
intuitionistic base.

Unlike propositional and predicate logic, there is no consensus on what the in-
tuitionistic fragment of modal logic is. While it is natural to admit distribution,
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Figure 1. The ‘grand tours’ of this work.

□(A → B) → □A → □B and necessitation, A/□A, these principles say nothing
about ^ which, recall, cannot be defined in terms of □. For instance one might also
want to admit ^-distribution, □(A → B) → ^A → ^B. This has led to several
distinct proposals, e.g. [BPR01, Wij90, DM23, GSC25, Ser84, Sim94]. Notably the
choice of ^-axioms also affects even the □-only (i.e. ^-free) theorems of the logic
[Gre99, DM23]. (See [DM22a] for a related survey.)

Instead we show that we can encode the ^ over second-order intuitionistic logic,
similarly to ∨ earlier, as long as we admit also a backwards box ■, as in tense
logic [Pri57]:

(1) ^A ⇐⇒ ∀X(□(A → ■X) → X)

A symmetric equivalence holds for the backwards diamond _. This allows us to
recover a theory of ^ (and _), instead of choosing an arbitrary axiomatisation. The
resulting second-order logic IKt2 conservatively extends Fischer Servi and Simpson’s
IK [Ser84, Sim94] and, furthermore, Ewald’s IKt [Ewa86].

1.2. Contributions. In this work we develop axiomatic, semantic and proof theo-
retic foundations for second-order tense logic, over both classical and intuitionistic
bases. Our main results are:

(i) soundness and completeness of our systems for corresponding (bi)relational
semantics; and,

(ii) cut-admissibility for associated labelled sequent calculi.
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These results are recovered from the ‘grand tours’ visualised in Fig. 1, where they
are indicated in blue, dashed. Our main completeness arguments, Theorems 5.1
and 6.1, are proved via proof search, notably adapting Schütte’s notion of semi-
valuation [Sch60] to the intuitionistic setting in order to overcome the hurdle of
impredicativity (cf. [Tai66, Pra68b, Pra70]). The main technicalities behind the
converse direction lie in the translation from labelled proofs to axiomatic proofs,
Theorem 7.1, driven by a tree-like representation of labelled sequents in tense logic
(see, e.g., [CLRT21]).

1.3. Related works. Second-order extensions of (classical) modal logic have been
proposed since the ’70s, cf. [Bul69, Fin70, Kap70]. Many aspects have since been
investigated, including expressivity[TC06, KT96], applications to interpolation the-
ory [Fit02, B́ıl07], and to the meta-theory of provability logics [AB93]. However
most of these works focus on full semantics, and so are not suitable for proof theo-
retic investigations.

More recently, second-order modal logics have been proposed as a specifica-
tion language for knowledge representation in artificial intelligence [BH15, BH16,
BHK18]. This is more relevant to our approach as they interpret the second-order
language over Henkin structures rather than full structures, although they only
treat quantifier-free (or predicative) comprehension. Notably in [BHK18] the au-
thors conclude that, for second-order modal logic “to be adopted as a specification
language in artificial intelligence and knowledge representation, appropriate theo-
retical results and formal tools need to be developed”. Our work may be viewed
as a contribution in this direction, developing the metalogical and proof theoretic
foundations therein.

1.4. Structure of the paper. Our main results are visualised in Fig. 1. In Sec-
tion 2 we introduce the axiomatisations Kt2 and IKt2 of classical and intuitionistic
second-order tense logic, respectively. Both include a full comprehension axiom, and
duly prove Eq. (1). In Section 3 we define relational semantics for Kt2, and two ex-
tensions by a partial order for IKt2, following Simpson’s methodology [Sim94]. The
main results of this section are soundness of the axiomatisations for their semantics,
Theorems 3.5 and 3.15 and Proposition 3.11.

In Section 4 we present labelled sequent calculi ℓKt2 and ℓIKt2, again inspired by
Simpson [Sim94], in particular including a left-∀ rule implementing full comprehen-
sion. We also present an intermediate multi-succedent version mℓIKt2, à la Mae-
hara [Mae54], more suitable for completeness-via-proof-search arguments (cf., e.g.,
[Pra70] and [Tak87, Section 15]), that is ultimately conservative over ℓIKt2, Propo-
sition 4.5. Our main proof search arguments are presented in Section 5 (classical)
and Section 6 (intuitionistic), yielding cut-free completeness of ℓKt2, Theorem 5.1,
and mℓIKt2, Theorem 6.1. The intuitionistic case, in particular, exhibits novel
intricacies, combining ideas from analogous constructions for simple type theory
[Pra68b] and first-order intuitionistic logic [Tak87, Section 15].

In Section 7 we present a translation from labelled systems ℓKt2 and ℓIKt2 to
axiomatic systems Kt2 and IKt2, Theorem 7.1, respectively, completing the cycle
of implications, viz. Figs. 1a and 1b. Finally we conclude the paper with some
additional perspectives in Section 8, in particular relating Kt2 and IKt2 by a negative
translation, and make some concluding remarks in Section 9.
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2. A second-order extension of tense logic

In this section we present the syntax of second-order tense logic and provide
axiomatisations of its intuitionistic and classical theory. One of the main points
here is to show how diamonds may actually be defined in terms of the other connec-
tives, even intuitionistically, allowing us to recover its theory, instead of providing
arbitrary axioms therein.

We point the reader to, e.g., [SU06, Chapter 12] for some useful background on
second-order (intuitionistic) propositional logic.

2.1. Syntax of second-order tense logic. Let us fix a set Pr of propositional
symbols, written P,Q,R etc., and a (disjoint) set Var of (formula/second-
order) variables, written X,Y, Z etc. We shall work with second-order tense
formulas, given by:

A,B,C, . . . ::= P ∈ Pr | X ∈ Var | A → B | □A | ■A | ∀XA

Write Fm for the set of all formulas. We shall frequently omit external brack-
ets of formulas and internal brackets of long implications, understanding them as
rightmost bracketed. I.e. A → B → C = (A → (B → C)) and so on.

The set of free variables of a formula A, written FV(A), is defined as expected:

FV(P ) := ∅
FV(X) := {X}

FV(A → B) := FV(A) ∪ FV(B)

FV(□A) := FV(A)
FV(■A) := FV(A)

FV(∀XA) := FV(A) \ {X}
Note that propositional symbols are not variables. If FV(A) = ∅ then A is closed
(or a sentence). Otherwise it is open.

Remark 2.1 (Propositional symbols vs variables). We could have worked without
propositional symbols at all, using only variables. However we take the current
formulation so that we may safely deal with only closed formulas in the systems
and semantics we present. This choice allows us to avoid the need for explicit
environments when interpreting syntax, lightening the notation therein.

It is well known that other propositional connectives and quantifiers can be
defined from our minimal syntax via impredicative encodings. In particular, over
pure second-order intuitionistic logic, we have the following equivalences:1

(2)

⊥ ⇐⇒ ∀XX
A ∨B ⇐⇒ ∀X((A → X) → (B → X) → X)
A ∧B ⇐⇒ ∀X((A → B → X) → X)
∃Y A ⇐⇒ ∀X(∀Y (A → X) → X)

Note that these equivalences hold even intuitionistically, in stark contrast to (first-
order) intuitionistic logic: there all the propositional connectives are independent.
See, e.g., [SU06, Section 12.4] or [GLT89, Section 11.3] for a more detailed account.
In the same vein, we will be able to define diamond modalities in the second-order
setting by appropriate equivalences:

(3)
^A ⇐⇒ ∀X(□(A → ■X) → X)
_A ⇐⇒ ∀X(■(A → □X) → X)

1In all cases, the variable X should be chosen not occurring free in A and B. Since we shall
typically only deal with closed formulas, we shall gloss over this technicality throughout.
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For now this is all rather informal, for the sake of motivation, as we have not
yet given any meaning to our formulas. To justify these equivalences, we shall now
turn to axiomatisations over our syntax, before presenting semantics in the next
section.

2.2. A minimal axiomatisation. We shall present only a minimal axiomatisation
of formulas in this work. There are two reasons for this:

(i) we want to justify the equivalences from Eq. (3) in the most general way, for
any extension of our axiomatisation; and,

(ii) we will later argue for the robustness of the minimal axiomatisation.

Towards Item i, let us temporarily expand the language of formulas by unary op-
erators ^ and _. We shall later drop these once we demonstrate that they are
unnecessary. We consider a minimal axiomatisation extending second-order intu-
itionistic propositional logic IPL2 only by normality of modalities, and adjunction
of the pairs (□,_) and (■,^):

Definition 2.2 (Axiomatisation with diamonds). IKt2(^,_) is the logic axioma-
tised by:

(1) All of second-order intuitionistic propositional logic IPL2, i.e. the axioms
and rules:2

K : A → B → A
S : (A → B → C) → (A → B) → A → C

D∀ : ∀X(A → B) → ∀XA → ∀XB
V : A → ∀XA (when (X /∈ FV(A)))

C : ∀XA → A[C/X]

A → B A
mp

B

A[P/X]
gen P fresh

∀XA

where ‘P fresh’ means that the propositional symbol P does not occur in
the conclusion of the rule.

(2) Normality of white and black modalities, i.e. the distributivity axioms and
necessitation rules:

D□ : □(A → B) → □A → □B
D^ : □(A → B) → ^A → ^B
D■ : ■(A → B) → ■A → ■B
D_ : ■(A → B) → _A → _B

A
nec□
□A

A
nec■
■A

(3) Adjunction of (□,_) and (■,^):

A_□ : _□A → A
A□_ : A → □_A

A^■ : ^■A → A
A■^ : A → ■^A

Remark 2.3 (Full comprehension). Note that the choice of C in the comprehension
axiom C is unrestricted: the formula A[C/X] may be more complex than ∀XA.
For instance we can even set C = ∀XA. This apparent circularity (known as
impredicativity) complicates, e.g., the semantics of second-order logic, as we shall
see in Section 3.

2Note that the propositional axioms and rules we give are rather those of minimal logic,
without ⊥. However in the second-order setting, given the definability of the latter, the difference

between ‘minimal’ and ‘intuitionistic’ disappears.
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Remark 2.4 (Other logical operators). As already mentioned, if we formulated
IPL2 with native operators ⊥,∨,∧, ∃, then the equivalences in Eq. (2) are all already
provable. For example ∀XX → ⊥ is just an instance of C and ∀X((A → X) →
(B → X) → X) → A∨B is derivable by setting C := A∨B in C. We thus henceforth
freely use those logical connectives in what follows, recasting those equivalences as
definitions. We also write ¬A := A → ⊥ and A ↔ B := (A → B) ∧ (B → A).

Remark 2.5 (Minimality). Over IPL the axioms and rules for white (or black)
modalities from Item 2 determine what is known as constructive modal logic CK [BPR01].
This is the smallest intuitionistic version of modal logic (with □ and ^) usually con-
sidered, with other common ones obtained by adding further principles of (classical)
modal logic, in particular among:

(4)
N^∨ : ^(A0 ∨A1) → ^A0 ∨ ^A1

N^⊥ : ^⊥ → ⊥
I^□ : (^A → □B) → □(A → B)

For instance WK := CK + N^⊥ was studied in [Wij90], WK + N^∨ was studied

in [DM23], IKN := CK+N^⊥ + I^□ was studied in [GSC25], and IK is the extension
of CK by all the axioms above [Ser84, Sim94]. The smallest intuitionistic modal
logic without ^, iK, defined as the extension of IPL by D□ and nec□, is conservatively
extended by CK. In this sense Item 2 is a minimal commitment in terms of extending
the underlying modal logics.

On the other hand, the tense axioms in Item 3 state only that (□,_) and (■,^)
are adjoint pairs, assuming no further relationship. These are standard axioms in
presentations of tense logic [BBW06], and so again Item 3 is a minimal commitment
in terms of relating the white and black modalities.

Example 2.6 (□ distributes over ∀). Let us see a simple example of IKt2(^,_)
reasoning in action, not least so we can explain how we present axiomatic proofs:

∀XA → A[P/X] by C, setting X = P
□∀XA → □A[P/X] by nec□ and D□
□∀XA → ∀X□A by gen,D∀,V

Note that we leave routine IPL reasoning here mostly implicit, rather focussing on
the modal and quantifier axioms necessary at each step. To expand out the final
step a little, consider the following gadget, where X /∈ FV(A):

A → B
∀X(A → B) by gen
∀XA → ∀XB by D∀
A → ∀XB by V

We shall continue to write axiomatic proofs in this fashion henceforth, without
additional explanation.

Note that we can also recover a proof of ■∀XA → ∀X■A, by simply exchanging
white and black modalities in the proof above. We shall also continue to use this
observation throughout, now just alluding to ‘symmetry’.

Before showing further examples involving diamonds, let us first justify Eq. (3),
as promised:

Theorem 2.7. IKt2(^,_) (and so all its extensions) proves:
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(1) ^A ↔ ∀X(□(A → ■X) → X)
(2) _A ↔ ∀X(■(A → □X) → X)

Proof. By symmetry, we need only prove the first item, for which we give each
direction separately:

^■P → P by A^■
^A → (^A → ^■P ) → P by IPL reasoning
^A → □(A → ■P ) → P by D^
^A → ∀X(□(A → ■X) → X) by gen,D∀,V

A → ■^A by A■^
□(A → ■^A) by nec□
(□(A → ■^A) → ^A) → ^A by IPL reasoning
∀X(□(A → ■X) → X) → ^A by C, setting X = ^A ✓

As we indicated earlier, we may now dispense with the native diamonds, under
the equivalences we have just proved:

Definition 2.8. IKt2 is obtained from IKt2(^,_) by setting:

^A := ∀X(□(A → ■X) → X)
_A := ∀X(■(A → □X) → X)

All further references to ^ and _ are bound by the definitions displayed above.

Example 2.9 (Redundancy). Note that, under the definitions of ^,_ above, some
of the axioms we gave in IKt2(^,_) become redundant, in the sense that they are
already derivable from the others. In particular this is the case for half of the
adjunction axioms, A^■ and A_□, and the distribution axioms for diamonds, D^
and D_:

■A → ■A by IPL reasoning
□(■A → ■A) by nec□
(□(■A → ■A) → A) → A by IPL reasoning
^■A → A by C and definition of ^

(A → B) → (B → ■P ) → A → ■P by IPL reasoning
□(A → B) → □(B → ■P ) → □(A → ■P ) by nec□ and D□s
□(A → B) → ((□A → ■P ) → P ) → □(B → ■P ) → P by IPL reasoning
□(A → B) → ^A → □(B → ■P ) → P by C and definition of ^
□(A → B) → ^A → ^B by gen,D∀,V and definition of ^

Again, derivability of D_ and A_□ follow by symmetry.

Example 2.10 (∀ distributes over □). Referring to Example 2.6, we also have the
converse principle:3

∀X□A → □A[P/X] by C, setting X = P
■(∀X□A → □A[P/X]) by nec■
(■(∀X□A → □A[P/X]) → A[P/X]) → A[P/X] by IPL reasoning
_∀X□A → A[P/X] by C, setting X = A[P/X] and definition of ^
_∀X□A → ∀XA by gen,D∀,V
□_∀X□A → □∀XA by nec□ and D□
∀X□A → □∀XA by A□_

3The reader familiar with predicate modal logics will notice the similarity to the so-called
‘Barcan’ formulas.
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The two directions together comprise a sort of infinitary version of the usual dis-
tribution of □s over ∧: □(A ∧B) ↔ □A ∧ □B.

Again, by symmetry, we also have ■∀XA ↔ ∀X■A.

2.3. On the underlying (first-order) modal and tense logics. Now that we
have addressed Item i, the general correctness of our definition of diamonds, let
us move to Item ii, the robustness of the minimal axiomatisation IKt2 we have
presented.

As we mentioned earlier in Remark 2.5, intuitionistic modal logics found in the
literature may contain further axioms among Eq. (4). It turns out that these are
all derivable within the current presentation:

⊥ → ■⊥ by IPL reasoning
□(⊥ → ■⊥) by nec□
(□(⊥ → ■⊥) → ⊥) → ⊥ by IPL reasoning
^⊥ → ⊥ by C and definition of ^

^Ai → ^A0 ∨ ^A1 for i = 0, 1, by IPL reasoning
■^Ai → ■(^A0 ∨ ^A1) by nec■ and D■
Ai → ■(^A0 ∨ ^A1) by A■^
A ∨B → ■(^A0 ∨ ^A1) by IPL reasoning
□(A ∨B → ■(^A0 ∨ ^A1)) by nec□
(□(A ∨B → ■(^A0 ∨ ^A1)) → ^A ∨ ^B) → ^A ∨ ^B by IPL reasoning
^(A ∨B) → ^A ∨ ^B by C, setting X = ^A ∨ ^B, and definition of ^

(■^A → _□B) → A → B by A■^, A_□ and IPL reasoning
_(^A → □B) → A → B by D■, D_ and nec■
□_(^A → □B) → □(A → B) by nec□ and D□
(^A → □B) → □(A → B) by A□_

To explain a little the step justified ‘by D■, D_ and nec■’, note that _(C → D) →
■C → _D is indeed readily derivable using those axioms and rule.

So IKt2 contains the intuitionistic modal logic IK of Fischer Servi and Simpson
[Ser77, Sim94]. By symmetry, it also contains all the black versions of the principles
in Eq. (4) too. Altogether, we now have that IKt2 furthermore contains Ewald’s
IKt [Ewa86], justifying our chosen nomenclature.4

Let us point out that the derivation of IKt in IKt2 does not really rely on the
availability of second-order reasoning. A closer inspection of the arguments reveals
that we need only the following (first-order) principles:

• ^A → □(A → ■C) → C
• _A → ■(A → □C) → C
• C → □(_C → A) → □A
• C → ■(^C → A) → ■A

These are derivable already from the modal axioms and rules, Item 2, and the
tense axioms, Item 3, under IPL similarly to the proof of Theorem 2.7. That such
a minimal axiomatisation already generates all of IKt seems to be a folklore fact
in the (intuitionistic) tense community, e.g. as stated in [LZQ22, Remark 2.3]. We

4Ewald includes a couple other axioms too, namely □(A ∧ B) ↔ □A ∧ □B and ^(A → B) →
□A → ^B (and their black analogues). Both are routinely derivable in even CK (and its black

analogue, respectively).
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have provided the derivations above nonetheless as we have not been able to find
them explicitly in the literature.

Proposition 2.11. IKt proves the following:

(1) (□A ∧ ^B) → ^(A ∧B).
(2) (■A ∧ _B) → _(A ∧B)
(3) (^A→ □B)→ □(A→B)
(4) (_A→ ■B)→ ■(A→B)
(5) ^(A→B)→ (^A→ □B)
(6) _(A→B)→ (_A→ ■B)

2.4. Classical theory. Finally, let us conclude this section by giving a classical
version of second-order tense logic. This is obtained, as expected, by adding double
negation elimination:5

Definition 2.12. Kt2 := IKt2 + ¬¬A → A.

We shall address the relationship between our intuitionistic and classical theories
later in Section 8.

3. Model theory: (bi)relational structures

In this section we introduce a standard form of semantics for intuitionistic modal
logics, exhibiting two relations: the partial order from Kripke structures for intu-
itionistic logic, and an ‘accessibility’ relation from relational structures for modal
and tense logic. The most interesting aspect herein is the accommodation of sets
(or predicates), i.e. the domain over which variables X,Y etc. vary.

We also consider a special subset of birelational structures, what we call predicate
structures, and their specialisation to classical models.

3.1. Two-sorted birelational semantics under full comprehension. The bire-
lational semantics of (first-order) intuitionistic tense formulas will be defined as
usual, following the intuitionistic modal and tense traditions [Ser77, Ewa86, PS86,
Sim94]. To account for second-order quantifiers, we must further include a domain
of sets over which variables vary:

Definition 3.1 (Birelational structures). A (two-sorted) (birelational) struc-
ture B includes the following data:

• A set W of worlds of B.
• A partial order ≤ on W .
• A class W ⊆ P(W ) of sets (or predicates) that are upwards-closed, i.e.
if V ∈ W and v ≤ v′ then V v =⇒ V v′.

• An interpretation PB ∈ W for each P ∈ Pr.
• An accessibility relation RB ⊆ W ×W .

We furthermore require in B that RB is a bisimulation on ≤, i.e.:

• ∀v, w,w′ ∈ W (vRBw ≤ w′ =⇒ ∃v′ ≥ v v′RBw′).
• ∀v, v′, w ∈ W (v′ ≥ vRBw =⇒ ∃w′ ≥ w v′RBw′.

Now, let us temporarily expand the language of formulas by including each
V ∈ W as a propositional symbol, setting VB = V . The judgement v ⊨B A, for
v ∈ W , is defined by induction on the size of a closed formula A:

5We could have made other equivalent choices, e.g. by adding Peirce’s law ((A → B) → A) →
A.



10 SECOND-ORDER (INUITIONISTIC) TENSE LOGIC

• v ⊨B P if PBv.6

• v ⊨B A → B if, whenever v ≤ v′ and v′ ⊨B A, we have v′ ⊨B B.
• v ⊨B □A if, whenever v ≤ v′ and vRBw′, we have w′ ⊨B A.
• v ⊨B ■A if, whenever v ≤ v′ and u′RBv′, we have u′ ⊨B A.
• v ⊨B ∀XA if, whenever v ≤ v′ and V ∈ W, we have v′ ⊨B A[V/X].

We write simply ⊨B A if w ⊨B A for every w ∈ W .
We say that M is comprehensive if, for each closed formula C (of the expanded

language), it has a set [C] = {w ∈ W | w ⊨B C} in W. A birelational model is
a comprehensive birelational structure.

Let us point out that ‘comprehensive structures’ have several alternative names
in the literature, including ‘full structures’, ‘complete structures’, ‘principal struc-
tures’ or even just ‘structures’ (where ‘pre-structures’ are not necessarily compre-
hensive). We prefer the present terminology as it is less ambiguous (e.g. full seman-
tics, complete axiomatisation,...) and is suggestive of the role this property plays
in modelling the comprehension axiom, C.

Remark 3.2 (Full vs Henkin). A naive domain of sets is simply the full powerset
P(W ). Such a structure is comprehensive by default, since it has every possible
set, it includes in particular the extensions [C]. This is often referred to as the
full or standard semantics of second-order logic.7 However such a semantics for
second-order logic admits no complete proof systems, as its validities are not even
analytical, let alone recursively enumerable. It is more typical in proof theoretic
investigations to admit the Henkin structures that we have presented here, treating
‘second-order’ as simply another sort. A useful discussion of this distinction and
source of further references is available in [Vä24], in particular Sections 5 and 9.

On the other hand, we cannot admit arbitrary domains of sets if IKt2 is to be
sound for our models. The condition of comprehensivity is required to ensure that
structures model comprehension, C. Note the awkwardness here: the class of setsW
must be specified outright, but whether it is comprehensive or not depends on the
resulting notion of entailment. For this reason typical defininitions of comprehensive
structures are impredicative.

Henceforth let us reserve the metavariable B to vary over birelational models.
One of the main results of this work is that our axiomatic system IKt2 and our
birelational semantics above actually induce the same logic:

Main Theorem 3.3 (Soundness and completeness). IKt2 ⊢ A ⇐⇒ ∀B ⊨B A.

The proof of the ⇐= direction, completeness, will be broken up into several
steps, in fact factoring through a further proof theoretic presentation of the logic
from Section 4. We shall turn to this soon, but for the remainder of this subsection
let us establish the =⇒ direction, soundness.

First we need a standard intermediate result:

Lemma 3.4 (Monotonicity). If v ≤ v′ and v ⊨B A then v′ ⊨B A.

6Note that this clause accounts for the new propositional symbols V ∈ W too.
7Traditionally the nomenclature ‘second-order’ would be reserved for only such semantics,

while our framework is perhaps more correctly dubbed ‘two-sorted first-order’. We shall refrain
from rehashing this discussion here but refer the reader to REF for a comprehensive explanation.
The current terminology ‘second-order’ has become standard in computational logic.
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Proof. By induction on the structure of A. Assume v ≤ v′ and v ⊨B A.

• A = P ∈ Pr: PBv for PB ∈ W. Thus, as PB is upwards closed wrt. ≤,
PBv′ and v′ ⊨B P .

• A = B → C: Consider arbitrary v′′ with v′ ≤ v′′ and v′′ ⊨B B. By
transitivity of ≤, v ≤ v′′ and therefore v′′ ⊨ C. By arbitrariness of v′′:
v′ ⊨B B → C.

• A = □B: Consider arbitrary v′′ and w′ with v′ ≤ v′′ and v′′RBw′. Again
by transitivity of ≤: v ≤ v′′, thus w′ ⊨B B and v′ ⊨B □B.

• A = ■B: Consider arbitrary v′′ and w′ with v′ ≤ v′′ and w′RBv′′. As
before, v ≤ v′′, thus w′ ⊨B B and v′ ⊨B ■B.

• A = ∀XB: Consider arbitrary v′′ with v′ ≤ v′′ and some V ∈ W. As before,
we have v ≤ v′′ and therefore v′′ ⊨B B[V/X]. This gives us v′ ⊨B ∀XB. ✓

Theorem 3.5 (Soundness). IKt2 ⊢ A =⇒ ∀B ⊨B A.

Proof. We proceed by induction on IKt2 ⊢ A.
The axioms and rules of IPL2, namely are standard, following from soundness of

IPL2 for comprehensive intuitionistic structures (see, e.g., [SU06, Section 11.1]). In
particular notice that their verification, being modality-free, does not involve the
accessibility relation RB.

The modal axioms D□, D■ and rules nec□, nec■ are also standard, following from
the soundness of IK (equivalently its black variant) for birelational structures [Ser84,
Theorem 4]. In particular notice that their verification, being quantifier-free, does
not involve the class W of sets.

It remains to verify the axioms involving ^,_, as they are coded by second-order
formulas.

• □(A→B)→ (^A→^B). Let w1 ≥ w with w1 ⊨B □(A→B). Let w2 ≥ w1

with w2 ⊨B ^A = ∀X(□(A → ■X) → X) with X fresh for A. We show
w2 ⊨B ^B = ∀X(□(B → ■X)→X) for X fresh for B. Let w3 ≥ w2 and
V ∈ W. We need to show w3 ⊨B □(B → ■V ) → V . Let w4 ≥ w3 with
w4 ⊨B □(B → ■V ) and so we are left to show that w4 ⊨B V . For w4 ≤
w5RBv5, v5 ⊨B B → ■V . Now, as w1 ⊨B □(A → B) and w1 ≤ w5RBv5,
v5 ⊨B A→B. Through standard reasoning, we have v5 ⊨B A→■V and so
w4 ⊨B □(A→ ■V ). As w2 ⊨B ^A = ∀X(□(A→ ■X)→X) and w4 ≥ w2,
w4 ⊨B □(A→ ■V )→ V and so it follows that w4 ⊨B V .

• A→ □_A. Let w1 ≥ w with v1 ⊨B A. We show for w2 ≥ w1 and w2RBv2
that v2 ⊨B _A = ∀X(■(A → □X) → X) for X fresh for A. Let v3 ≥ v2
and V ∈ W. We show v3 ⊨B ■(A → □V ) → V . Let v4 ≥ v3 with v4 ⊨B

■(A → □V ). As w2RBv2 ≤ v4, there exists w4 ≥ w2 with w4RBv4. By
Lemma 3.4, w4 ⊨B A, and as v4 ⊨B ■(A→□V ), w4 ⊨B A→□V . Through
standard reasoning this means that w4 ⊨B □V , and as w4RBv4, we must
have v4 ⊨B V .

• ^■A→ A. Let w1 ≥ w with w1 ⊨B ^■A = ∀X(□(■A→ ■X)→X) for X
fresh for ■A. Then by definition as A ∈ W, w1 ⊨B □(■A→ ■A)→A. For
all worlds v, we must have v ⊨B ■A→■A, so therefore w1 ⊨B □(■A→■A).
So it follows that w1 ⊨B A.

The remaining axioms D_,A■^,A_□ follow by a symmetric argument. ✓

3.2. Two-sorted predicate semantics under full comprehension. We shall
also consider intuitionistic predicate structures, in which every world is a classical
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modal model. We introduce this additional semantics for two reasons: (i) in order
to further test the robustness of the logic IKt2; and, (ii) since we shall use these for
our ultimate countermodel construction in Section 6.

Definition 3.6 (Predicate structures). A (two-sorted) predicate structure P
includes the following data:

• A set Ω of intuitionistic worlds (or states).
• A partial order ≤ on Ω.

• A set W of (modal) worlds.
• A set W ⊇ Pr of (modal) sets (or (modal) predicates).

• An interpretation P a ⊆ W for each P ∈ W and a ∈ Ω. We require
monotonicity: a ≤ b =⇒ P a ⊆ P b.

• An accessibility relation Ra ⊆ W ×W at a. We require monotonicity:
a ≤ b =⇒ Ra ⊆ Rb.

Let us temporarily expand the language of formulas by including each P ∈ W
as a propositional symbol. The judgement a, v ⊨P A, for a ∈ Ω, v ∈ W , is defined
by induction on the size of a formula A as follows:

• a, v ⊨P P if v ∈ P a.
• a, v ⊨P A → B if, whenever a ≤ b and b, v ⊨P A, we have b, v ⊨P B.
• a, v ⊨P □A if, whenever a ≤ b and vRbw, we have b, w ⊨P A.
• a, v ⊨P ■A if, whenever a ≤ b and uRbv, we have b, u ⊨P A.
• a, v ⊨P ∀XA if, whenever a ≤ b and P ∈ W, we have b, v ⊨P A[P/X].

We write simply ⊨P A if a, v ⊨P A for every a ∈ Ω, v ∈ W .
We say that M is comprehensive if, for each formula C (of the expanded

language), it has a set [C] ∈ W with [C]a = {w ∈ W | a,w ⊨P C}. A predicate
model is a comprehensive predicate structure.

Henceforth let us reserve the metavariable P to vary over predicate models. In
fact, predicate structures can be construed as particular birelational structures.
Formally:

Definition 3.7 (Birelational collapse). Given a predicate structure P, as presented
in Definition 3.6, we define a birelational structure BP by:

• The set of worlds is WBP
:= Ω×W .

• The partial order ≤BP
is given by (a, v) ≤BP

(b, w) if a ≤ b and v = w.
• The class of sets WBP

includes each VBP
:= {(a, v) ∈ WBP

| v ∈ V a}, for
V ∈ W.

• The interpretation of propositional symbols PBP
is given by {(a, v) ∈

WBP
| v ∈ P a}.

• The accessibility relation RBP
is given by (a, v)RBP

(b, w) if a = b and
vRaw.

We better show that BP satisfies the appropriate conditions of Definition 3.1:

Proposition 3.8. BP is a well-defined birelational structure.

Proof. First we show that each V ∈ WBP
is upwards closed. Suppose (a, v) ≤BP

(b, v), WLoG, i.e. a ≤ b. We have:

(a, v) ∈ VBP
=⇒ v ∈ V a by definition of VBP

=⇒ v ∈ V b by monotonicity of V −

=⇒ (b, v) ∈ VBP
by definition of VBP



SECOND-ORDER (INUITIONISTIC) TENSE LOGIC 13

Now let us show that RBP
is a bisimulation on ≤BP

:

• Suppose (a, v)RBP
(a,w) ≤BP

(b, w), WLoG, so vRaw and a ≤ b. Then:
– (a, v) ≤BP

(b, v) by definition of ≤BP
; and,

– vRbw by monotonicity of R−, so (b, v)RBP
(b, w) by definition of RBP

.
So we can choose (b, v) as the required world.

• Suppose (b, v) ≥BP
(a, v)RBP

(a,w), WLoG, so b ≥ a and vRaw. Then:
– (b, w) ≥BP

(a,w) by definition of ≤BP
; and,

– vRbw by monotonicity of R−, so (b, v)RBP
(b, w) by definition of RBP

.
So we can choose (b, w) as the required world. ✓

We can exhibit a rather strong equivalence between the theories of P and BP:

Proposition 3.9 (Equivalence). Let A(X⃗) be a formula, all free variables dis-

played, and V⃗ ∈ W with |V⃗ | = |X⃗|. Then (a, v) ⊨BP
A(V⃗ ) ⇐⇒ a, v ⊨P A(V⃗BP

).

Proof. By induction on the structure of A(X⃗):

• If A(X⃗) = X and V⃗ = V then:

(a, v) ⊨BP
VBP

⇐⇒ v ∈ V a by definition of ⊨BP

⇐⇒ a, v ⊨P V by definition of ⊨P

• A = P . (a, v) ⊨BP
P ⇐⇒ (a, v) ∈ PBP

⇐⇒ v ∈ P a ⇐⇒ a, v ⊨P P .

• A(X⃗) = B(X⃗) → C(X⃗): Assume (a, v) ⊨BP
B(V⃗ ) → C(V⃗ ) and consider

any b ≥ a with b, v ⊨P B(V⃗BP
). By inductive hypothesis (b, v) ⊨BP

B(V⃗ )

and by (a, v) ≤BP
(b, v) we have (b, v) ⊨BP

C(V⃗ ). Again by inductive hy-

pothesis we get b, v ⊨P C(V⃗BP
), which shows a, v ⊨P B(V⃗BP

) → C(V⃗BP
).

For the converse assume a, v ⊨P B(V⃗BP
) → C(V⃗BP

) and consider any

(b, v) ≥BP
(a, v) with (b, v) ⊨BP

B(V⃗ ). By inductive hypothesis b, v ⊨P

B(V⃗BP
) and by a ≤ b we have b, v ⊨P C(V⃗BP

). Again by inductive hy-

pothesis we get (b, v) ⊨BP
C(V⃗ ), which shows (a, v) ⊨BP

B(V⃗ ) → C(V⃗ ).

• A = □B(X⃗): (a, v) ⊨BP
□B(V⃗ ) ⇐⇒ (b, w) ⊨BP

B(V⃗ ) for any (a, v) ≤BP

(b, v)RBP
(b, w)

I.H.⇐⇒ b, w ⊨P B(V⃗BP
) for any a ≤ b and vRbw ⇐⇒ a, v ⊨P

□B(V⃗BP
)

• A = ■B(X⃗): (a, v) ⊨BP
■B(V⃗ ) ⇐⇒ (b, w) ⊨BP

B(V⃗ ) for any (a, v) ≤BP

(b, v) and (b, w)RBP
(b, v)

I.H.⇐⇒ b, w ⊨P B(V⃗BP
) for any a ≤ b and wRbv

⇐⇒ a, v ⊨P ■B(V⃗BP
)

• A = ∀XB(X⃗,X) : (a, v) ⊨BP
∀XB(V⃗ , X) ⇐⇒ (b, v) ⊨BP

B(V⃗ , V ) for any

(b, v) ≥BP
(a, v) and V ∈ WBP

I.H.⇐⇒ b, v ⊨P B(V⃗BP
, VBP

) for any a ≤ b

and VBP
∈ W ⇐⇒ a, v ⊨P ∀XB(V⃗BP

, X). ✓

We can now recover a couple further useful results from this identification:

Corollary 3.10 (Comprehensivity). If P is comprehensive then so is BP.

Proof. Suppose B is comprehensive, and consider the sets [C] with v ∈ [C]a ⇐⇒
a, v ⊨P C. We have as required:

[C]BP
= {(a, v) ∈ WBP

| v ∈ [C]a} by definition of −BP

= {(a, v) ∈ WBP
| a, v ⊨P C} by definition of [C]

= {(a, v) ∈ WBP
| (a, v) ⊨BP

C} by Proposition 3.9 ✓
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Putting the previous Proposition 3.9 and Corollary 3.10 together we have:

Proposition 3.11. ∀B ⊨B A =⇒ ∀P ⊨P A.

Finally it will be useful in our proof search argument in Section 6 to also inherit:

Lemma 3.12 (Monotonicity). If a ≤ b and a, v ⊨P A then b, v ⊨P A.

Proof. Given a ≤ b, we have:

a, v ⊨P A =⇒ (a, v) ⊨BP
A by Proposition 3.9

=⇒ (b, v) ⊨BP
A since (a, v) ≤BP

(b, v) and Lemma 3.4
=⇒ b, v ⊨P A by Proposition 3.9 ✓

3.3. Two-sorted (uni)relational semantics under full comprehension. Fi-
nally let us adapt the semantics we have presented to the classical setting. We can
view classical structures as special cases of either birelational or predicate structure
where ≤ is trivial, i.e.:

• a birelational structure where all points are incomparable; or,
• a predicate model with only one intuitionistic world.

For the sake of completeness, let us give a self-contained definition:

Definition 3.13 (Classical structures). A (uni)relational structure R includes
the following data:

• A set W of worlds.
• A class W ⊆ P(W ) of sets (or predicates).
• An interpretation PR ∈ W for each P ∈ Pr.
• An accessibility relation R ⊆ W ×W .

Now, let us temporarily expand the language of formulas by including each V ∈ W
as a propositional symbol, setting V R := V . The judgement v ⊨R A, for v ∈ W , is
defined by induction on the size of a closed formula A:

• v ⊨R P if PRv.
• v ⊨R A → B if, whenever v ⊨R A, we have v ⊨R B.
• v ⊨R □A if, whenever vRw, we have w ⊨R A.
• v ⊨R ■A if, whenever uRv, we have u ⊨R A.
• v ⊨R ∀XA if, whenever V ∈ W, we have v ⊨R A[V/X].

We write simply ⊨R A if v ⊨R A for every v ∈ W .
We say that R is comprehensive if, for each formula C (of the expanded

language), it has a predicate [C] ∈ W with [C] = {w ∈ W | w ⊨R C}. A
(uni)relational model is a comprehensive relational structure.

Henceforth, let us reserve the metavariable R to vary over relational models.
Our main metalogical result for classical second-order tense logic, analogous to
Main Theorem 3.3 in the intuitionistic case, is:

Main Theorem 3.14 (Soundness and Completeness). Kt2 ⊢ A ⇐⇒ ∀R ⊨R A.

Like the intuitionistic case completeness, the ⇐= direction, is factored through
a proof theoretic presentation of the logic from Section 4. Given how we have
defined relational models, we can factor soundness, the =⇒ direction, into (a)
already established soundness of IKt2 for birelational structures; and (b) verification
of the additional axiom ¬¬A → A:

Theorem 3.15 (Soundness). Kt2 ⊢ A =⇒ ∀R ⊨R A.
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Proof sketch. A relational model can be expanded into a birelational model by
simply setting ≤ to be equality on worlds. Thus all the axioms and rules of IKt2
are already sound for relational models, by Theorem 3.5. It remains to verify the
double negation axiom, ¬¬A → A. Suppose v ⊨R ¬¬A, then either v ̸⊨R A or
v ⊨R ⊥. We consider each case separately:

v ̸⊨R ¬A =⇒ v ⊨R A and v ̸⊨R ⊥ by definition of ⊨R and ¬
=⇒ v ⊨R A

v ⊨R ⊥ =⇒ v ⊨R [A] since ⊥ = ∀XX and by definition of ⊨R

=⇒ v ∈ [A] by definition of ⊨R

=⇒ v ⊨R A by definition of [A] ✓

4. Proof theory: labelled systems

We shall now turn to a proof theoretic presentation of second-order tense logic.
As well as for self contained interest this will, as already mentioned, serve to factor
our earlier stated axiomatic completeness results. Unlike the previous two sections,
we shall first present the classical system, before recovering the intuitionistic ver-
sions via appropriate constraints. The only reason for this is brevity, allowing us
to define all systems we consider without repeating rules.

4.1. Labelled sequent calculi. Labelled deductive systems were proposed by Gab-
bay [Gab91] as a uniform proof-theoretic framework for a wide range of logics. The
idea has been applied to modal logic by using the strength of its (uni)relational
semantics [Rus96] in order to resolve the difficulty of designing proof systems for
modal logic using standard Gentzen sequents. They reason about formulas la-
belled by the world in which they are evaluated, while keeping track of a ‘control’
constraining the accessibility relation between worlds. They were fully developed
for intuitionistic modal logic by Simpson [Sim94], before being widely applied to
e.g. classical modal logic with Horn [Vig00] or coherent [Neg05] extensions and be-
yond [Neg14], justification logic [Gha17], non-normal modal logics [DON18], con-
ditional logics [GNO21], first-order modal logic [Orl21], etc.

Let us now fix a set Wl of world symbols, written u, v, w etc. A relational
atom is an expression vRw, where v, w ∈ Wl. A labelled formula is an expression
v : A where v ∈ Wl and A is a formula. Write ℓFm for the set of labelled formulas.

A (labelled) sequent is an expression R |Γ ⇒ ∆ where R is a set of relational
atoms, called the relational context, and Γ and ∆ are multisets of labelled for-
mulas, called the (LHS) cedent and (RHS) cedent, respectively. ‘ | ’ and ‘⇒’
here are just syntactic delimiters. Informally, we may read sequents as “if all of
the LHS holds, then some of the RHS is true”. This intuition is developed more
formally later in Section 7.

Definition 4.1 (Sequent calculi). The system ℓKt2 is given by the rules in Fig. 2.
We also define two intuitionistic restrictions of this system:

• ℓIKt2 is the restriction of ℓKt2 to sequents with singleton RHS. (In partic-
ular, there can be no right structural steps, wr and cr).

• mℓIKt2 is the restriction of ℓKt2 where each right logical step has singleton
RHS in its premiss (i.e. ∆ = ∅).

The lower sequent of any inference step is the conclusion, and any upper se-
quents are premisses. Proofs and derivations in a system are defined as usual.
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Identity and cut:

id
R | v : A ⇒ v : A

R |Γ ⇒ ∆, v : A R |Γ′, v : A ⇒ ∆′
cut

R |Γ,Γ′ ⇒ ∆,∆′

Strutural rules:

R |Γ ⇒ ∆
wl

R |Γ, v : A ⇒ ∆

R |Γ ⇒ ∆
wr

R |Γ ⇒ ∆, v : A

R |Γ, v : A, v : A ⇒ ∆
cl

R |Γ, v : A ⇒ ∆

R |Γ ⇒ ∆, v : A, v : A
cr

R |Γ ⇒ ∆, v : A

Logical rules:

R |Γ ⇒ ∆, v : A R |Γ′, v : B ⇒ ∆′
→l

R |Γ,Γ′, v : A → B ⇒ ∆,∆′
R |Γ, v : A ⇒ ∆, v : B

→r

R |Γ ⇒ ∆, v : A → B

R |Γ, v : A[C/X] ⇒ ∆
∀l

R |Γ, v : ∀XA ⇒ ∆

R |Γ ⇒ ∆, v : A[P/X]
∀r P fresh

R |Γ ⇒ ∆, v : ∀XA

R, vRw |Γ, w : A ⇒ ∆
□l
R, vRw |Γ, v : □A ⇒ ∆

R, vRw |Γ ⇒ ∆, w : A
□r w fresh

R |Γ ⇒ ∆, v : □A

R, uRv |Γ, u : A ⇒ ∆
■l
R, uRv |Γ, v : ■A ⇒ ∆

R, uRv |Γ ⇒ ∆, u : A
■r u fresh

R |Γ ⇒ ∆, v : ■A

Figure 2. Rules of the labelled system ℓKt2 (with cut). Here a
symbol is fresh if it does not occur in the lower sequent.

We write L ⊢ R |Γ ⇒ ∆ if the calculus L proves the R |Γ ⇒ ∆. We write simply
L ⊢ A if L ⊢ · | · ⇒ v : A.

ℓKt2 is nothing more than the extension of the labelled calculus for tense logic [BN10,
CLRT21] by the usual rules for second-order quantifiers (see, e.g., [Gir87, Sec-
tion 3.A.1], [RS24, Section 5.1] or [Tak87, Definition 15.3]). The singleton RHS
restriction defining ℓIKt2 is standard for intuitionistic sequent calculi, with calculi
for intuitionistic modal and tense logics obtained in the same way [Sim94, Str13,
Lyo25]. Finally mℓIKt2 is a somewhat intermediate calculus, in the spirit of Mae-
hara [Mae54, KS19]. The reason we introduce it is that it is necessary for our
proof search argument later, in Section 6. As we shall soon see, over the language
we consider, there is no material difference between our two intuitionistic systems,
cf. Proposition 4.5.

First let us state our main proof theoretic results:

Main Theorem 4.2 (Hauptsatz). We have the following:

(1) ℓKt2 ⊢ A =⇒ ℓKt2 \ cut ⊢ A.
(2) ℓIKt2 ⊢ A =⇒ ℓIKt2 \ cut ⊢ A.

The admissibility of cut is a key desideratum in sequent calculus proof the-
ory. In particular it renders the system more amenable to proof search, reducing
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non-determinism therein. As for our soundness and completness results, Main The-
orems 3.3 and 3.14, this result is obtained by the ‘grand tours’ of Figs. 1a and 1b.

4.2. Interlude: false positives. Usual labelled calculi for IK, e.g. from [Sim94,
Section 7.2], include the rule,

(5)
R |Γ, v : ⊥ ⇒ w : A

where R (as well as Γ) may be arbitrary. Under our second-order definition of
falsity, ⊥ := ∀XX, the above is derivable in ℓIKt2 when v and w are connected by
some (undirected) path inR. Formally, let us say that v and w are connected inR
if there is a sequence v = v0, . . . , vn = w where, for each i < n, either viRvi+1 ∈ R
or vi+1Rvi ∈ R. We have:

Lemma 4.3. ℓIKt2 ⊢ R |Γ, v : ⊥ ⇒ w : A whenever v and w are connected in R.

Proof. We proceed by induction on the length of a path v = v0, . . . , vn = w con-
necting v and w in R.

• If n = 0, so v = w, we have:

id
R |Γ, w : A ⇒ w : A

∀l

R |Γ, w : ∀XX ⇒ w : A

• Otherwise either vRv1 or v1Rv. We handle the two cases respectively by,

IH
R, vRv1 |Γ, v1 : ∀XX ⇒ w : A

□l
R, vRv1 |Γ, v : □∀XX ⇒ w : A

∀l

R, vRv1 |Γ, v : ∀XX ⇒ w : A

IH
R, v1Rv |Γ, v1 : ∀XX ⇒ w : A

□l
R, v1Rv |Γ, v : ■∀XX ⇒ w : A

∀l

R, v1Rv |Γ, v : ∀XX ⇒ w : A

where derivations marked IH are obtained by the inductive hypothesis. ✓

On the other hand, clearly the instance · | v : ∀XX ⇒ w : P of Eq. (5) has no
cut-free proof in ℓIKt2 (and so no proof at all, cf. Main Theorem 4.2). As it happens
the generality of Eq. (5) turns out to be inconsequential: in any ℓKt2 proof of a
formula, or even a labelled sequent with connected relational context, all relational
contexts appearing in the proof remain connected, by inspection of the rules of
Fig. 2. This is exemplary of a more general phenomenon in second-order logic with
a negative basis: while we may be able to correctly define the positive connectives,
we do not necessarily recover all of their proof theoretic behaviour (see, e.g., [TS00,
Section 6.2] for a pertinent related discussion).8

For a more topical example, let us now turn to the diamond modalities. We
can simulate the usual labelled ^r rule for IK (see [Sim94, Section 7.2]) using the

8Note that our encoding of falsity captures rather the additive false (which is positive), rather

than multiplicative, in the sense of linear logic (see, e.g., [Mil25, Section 9.5]). It is probably
more accurate to call it ‘0’ instead accordingly, but this seems to be uncommon notation in the

literature on (second-order) intuitionistic logic.
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encoding of Eq. (3) as follows:

(6)
R |Γ ⇒ w : A

id
| v : A ⇒ v : A

■l
vRw |w : ■A ⇒ v : A

→l

R, vRw |Γ, w : A → ■X ⇒ v : X
□l
R, vRw |Γ, v : □(A → ■X) ⇒ v : X

∀r,→r

R, vRw |Γ ⇒ v : ∀X(□(A → ■X) → X)

Similarly for _. However, notwithstanding Theorem 2.7, it does not seem possible
to carry out such a local interpretation of the left rules:

(7)
R, uRv |Γ, v : A ⇒ w : B

^l v fresh
R |Γ, u : ^A ⇒ w : B

R, uRv |Γ, u : A ⇒ w : B
_l u fresh

R |Γ, v : _A ⇒ w : B

4.3. Relating the two intuitionistic calculi. We mentioned earlier that there
is no material difference between our two intuitionistic calculi, in terms of the logic
they define. Let us now make this formal:

Lemma 4.4. If mℓIKt2(\cut) ⊢ R |Γ ⇒ ∆ then there is some w : A ∈ ∆
s.t. ℓIKt2(\cut) ⊢ R |Γ ⇒ w : A (respectively).

Proof. By induction on the proof of R |Γ ⇒ ∆ in mℓIKt2 and a case analysis on
the last rule applied in it:

• id and right logical rules: immediate as they have only one formula on the
RHS.

• Right weakening:
R |Γ ⇒ ∆

wr

R |Γ ⇒ ∆, v : A
By inductive hypothesis, there is a w : C in ∆ such that ℓIKt2 ⊢ R |Γ ⇒
w : C; which is all we need.

• Right contraction:
R |Γ ⇒ ∆, v : A, v : A

cr
R |Γ ⇒ ∆, v : A

By inductive hypothesis, there either is a w : C in ∆ such that ℓIKt2 ⊢
R |Γ ⇒ w : C or ℓIKt2 ⊢ R |Γ ⇒ v : A; which is all we need.

• Non-branching left rules:
R |Γ′ ⇒ ∆

R |Γ ⇒ ∆
By inductive hypothesis there is w : A ∈ ∆ s.t. ℓIKt2 ⊢ R |Γ′ ⇒ w : A, by
applying the same rule, ℓIKt2 ⊢ R |Γ ⇒ w : A.

• Implication left rule:
R |Γ ⇒ ∆, v : A R |Γ′, v : B ⇒ ∆′

→l

R |Γ,Γ′, v : A → B ⇒ ∆,∆′

By inductive hypothesis, either there is w : C ∈ ∆ s.t. ℓIKt2 ⊢ R |Γ ⇒ w :
C, in which case, by weakening ℓIKt2 ⊢ R |Γ,Γ′, v : A → B ⇒ w : C, or
ℓIKt2 ⊢ R |Γ ⇒ v : A and there is w : C ∈ ∆′ s.t. ℓIKt2 ⊢ R |Γ′, v : B ⇒
w : C, in which case, by →l, ℓIKt2 ⊢ R |Γ,Γ′, v : A → B ⇒ w : C.

• cut:
R |Γ ⇒ ∆, v : A R |Γ′, v : A ⇒ ∆′

cut
R |Γ,Γ′ ⇒ ∆,∆′

By inductive hypothesis, either there is w : C ∈ ∆ s.t. ℓIKt2 ⊢ R |Γ ⇒
w : C, in which case, by weakening ℓIKt2 ⊢ R |Γ,Γ′ ⇒ w : C, or ℓIKt2 ⊢
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R |Γ ⇒ v : A and there is w : C ∈ ∆′ s.t. ℓIKt2 ⊢ R |Γ′ ⇒ w : C, in which
case, by cut, ℓIKt2 ⊢ R |Γ,Γ′ ⇒ w : C. ✓

From here we have immediately:

Proposition 4.5. mℓIKt2(\cut) ⊢ A =⇒ ℓIKt2(\cut) ⊢ A (respectively).

Remark 4.6. The result above may seem surprising at first glance, as it does
not typically hold for even (first-order) intuitionistic propositional logic (without
modalities), in the presence of positive connectives. For instance there is a multi-
succedent intuitionistic proof of A0 ∨A1 ⇒ A0, A1, but clearly no A0 ∨A1 ⇒ Ai is
provable. We avoid this issue as we do not work with native positive connectives,
including ∨, only their impredicative encodings from Eq. (2). Similarly note, in
Lemma 4.4 above, there is no requirement for ∆ to be nonempty: it is simply not
possible to prove sequents with empty RHS in mℓIKt2, by analysis of its rules.

4.4. Further examples. We conclude this section with a few more examples of
labelled proofs. First, recalling the axiomatic derivation in Section 2.3, here is a
labelled proof of I^□:

id
wRv | v : A ⇒ v : A

id
wRv |w : P ⇒ w : P

■l
wRv | v : ■P ⇒ w : P

→l

wRv | v : A, v : A→ ■P ⇒ w : P
□l
wRv | v : A,w : □(A→ ■P ) ⇒ w : P

→r

wRv | v : A ⇒ w : □(A→ ■P )→ P
∀r

wRv | v : A ⇒ w : ∀X(□(A→ ■X)→X)

id
wRv | v : B ⇒ v : B

□l
wRv |w : □B ⇒ v : B

→l

wRv |w : ∀X(□(A→ ■X)→X)→ □B, v : A ⇒ v : B
→r

wRv |w : ∀X(□(A→ ■X)→X)→ □B ⇒ v : A→B
□r

· |w : ∀X(□(A→ ■X)→X)→ □B ⇒ w : □(A→B)
→r

· | · ⇒ w : (∀X(□(A→ ■X)→X)→ □B)→ □(A→B)
= .................................................................................................................

· | · ⇒ w : (^A → □B) → □(A → B)

Now, recalling Example 2.10, here is a labelled proof of ∀X□A→ □∀XA:

id
wRv | v : A[P/X] ⇒ v : A[P/X]

□l
wRv |w : □A[P/X] ⇒ v : A[P/X]

∀l

wRv |w : ∀X□A ⇒ v : A[P/X]
∀r

wRv |w : ∀X□A ⇒ v : ∀XA
□r

· |w : ∀X□A ⇒ w : □∀XA
→r

· | · ⇒ w : ∀X□A→ □∀XA

Let us point out that even ■-free theorems might need formulas including ■ in
their cut-free proofs, due to the ∀l steps involved, exemplifying the non-analyticity
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of second-order logic:

(8)

id
vRw | v : P ⇒ v : P

■l
vRw |w : ■P ⇒ v : P

∀l

vRw |w : ∀XX ⇒ v : P
□l

vRw | v : □⊥ ⇒ v : P
∀r

vRw | v : □⊥ ⇒ v : ∀XX
→r

vRw | · ⇒ v : ¬□⊥

id
vRw |w : ⊥ ⇒ w : ⊥

□l
vRw | v : □⊥ ⇒ w : ⊥

∀l

vRw | v : ∀XX ⇒ w : ⊥
→l

vRw | v : ¬¬□⊥ ⇒ w : ⊥
□r

· | v : ¬¬□⊥ ⇒ v : □⊥

Previous examples were intuitionistic proofs, of ℓIKt2. The following are exam-
ples of classical proofs.

id
vRw | v : A ⇒ v : A,w : ⊥

■l
vRw |w : ■A ⇒ v : A,w : ⊥

□l
vRw | v : □■A ⇒ v : A,w : ⊥

□r
· | v : □■A ⇒ v : A, v : □⊥

id
vRw | v : A ⇒ v : A,w : ⊥

□l
vRw |w : □A ⇒ v : A,w : ⊥

■l
vRw | v : ■□A ⇒ v : A,w : ⊥

■r
· | v : ■□A ⇒ v : A, v : ■⊥

Using the two proofs above, we can obtain the following:

proof above

· | v : □■A ⇒ v : A, v : □⊥
→r

| · ⇒ v : □■A→A, v : □⊥

proof above

· | v : ■□A ⇒ v : A, v : ■⊥
→r

· | · ⇒ v : ■□A→A, v : ■⊥
id
· | v : A ⇒ v : A

→l

· | v : (■□A→A)→A ⇒ v : A, v : ■⊥
→l

· | v : (□■A→A)→ (■□A→A)→A ⇒ v : □⊥, v : A, v : ■⊥
∀l

· | v : ∀X((□■A→X)→ (■□A→X)→X) ⇒ v : □⊥, v : A, v : ■⊥

As a final example, let us see a classical ℓKt2 proof of a non-constructive principle,
∀X(A ∨ B) → A ∨ ∀XB for X /∈ FV(A). To save space, we shall omit “· | ” at the
beginning of each LHS as well as all labels for formulas (they are all the same).
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id
A ⇒ A

→r

⇒ A → A

id
B ⇒ B

wr

B ⇒ A,B
→r

⇒ B → A,B
id
A ⇒ A

2→l

(A → A) → (B → A) → A ⇒ A,B
∀l

∀Y ((A → Y ) → (B[Q/X] → Y ) → Y ⇒ A,B[Q/X]
= ............................................................................................................

A ∨B[Q/X] ⇒ A,B[Q/X]
id
P ⇒ P

→l

A ∨B[Q/X], A → P ⇒ B[Q/X], P
∀l

∀X(A ∨B), A → P ⇒ B[Q/X], P
∀r

∀X(A ∨B), A → P ⇒ ∀XB,P
id
P ⇒ P

→l

∀X(A ∨B), A → P, ∀XB → P ⇒ P, P
cr

∀X(A ∨B), A → P, ∀XB → P ⇒ P
2→r

∀X(A ∨B) ⇒ w : (A → P ) → (∀XB → P ) → P
∀r

∀X(A ∨B) ⇒ ∀Y ((A → Y ) → (∀XB → Y ) → Y )
= ........................................................................................................

∀X(A ∨B) ⇒ A ∨ ∀XB
→r

⇒ ∀X(A ∨B) → A ∨ ∀XB

5. Completeness via proof search: the classical case

One of the main technical contributions of the present work is the cut-free com-
pleteness of our sequent calculi via proof search. For second (and higher) order
(classical) predicate logic cut-admissibility remained an open problem since the
late ’30s, what came to be known as Takeuti’s conjecture (see, e.g., [RS24, Sec-
tion 5.1]). In the late ’60s, the problem was finally resolved positively by Prawitz
[Pra68a] and Tait [Tai66] for second order logic, and extended to simple type theory
(i.e. higher order logic) by Prawitz [Pra68b] and Takahashi [Tak67]. Both exploited
Schütte’s technique of partial valuations [Sch60], the key result being that they may
be appropriately extended into total valuations. See, e.g., [Sch77, Chapter IV] or
[Tak87, Section 21] for textbook presentations of the methodology for simple type
theory.

This is the starting point for our argument, from which we must employ a num-
ber of adaptations. We shall avoid working explicitly with the notion of partial
valuation, rather only demonstrating the properties we need, but making due re-
marks to the classical methodology throughout. In the intuitionistic setting our
argument is rather more involved, with little prior related work. For this reason
we shall start with the classical case, in this section, showcasing the main ideas
of the methodology before addressing the further technicalities necessary for the
intuitionistic case in the next section. Thus the main result of this section is:

Theorem 5.1 (Classical cut-free completeness). ∀R ⊨R A =⇒ ℓKt2 \ cut ⊢ A.

As expected we shall approach this via contraposition, extracting a countermodel
from failed proof search. As already mentioned, our proof exploits ideas about
partial valuations originating from [Sch60]; our method for extending them to total
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valuations adapts Prawitz’ concept of possible values from his work on simple type
theory [Pra68b].9

5.1. Setting up proof search. First and foremost, we shall think of building
proofs bottom-up, from the conclusion towards initial sequents. We shall describe
the proof search process with this view in mind.

5.1.1. Terminology for identifying formula occurrences. We shall use standard ter-
minology about relationships between labelled formula occurrences in proofs and
inference steps. In particular the principal formula of a logical step is the dis-
tinguished labelled formula occurrence in the lower sequent, as typeset in Fig. 2.
Auxiliary formulas are any distinguished labelled formula occurrences in the up-
per sequent(s). A good account for this and related terminology can be found in
[Bus98, Section 1.2.3].

5.1.2. Cedents-as-sets. In proof search, it is useful to construe cedents as sets rather
than multisets of labelled formulas. Of course this makes no difference to usual
provability, in the presence of structural rules. In practice, if we have two (or more)
occurrences of the same labelled formula in a cedent, one can be safely weakened
(i.e. deleted by applying wl or wr steps). In case an additional copy is required,
we always contract (i.e. duplicate by applying cl or cr steps) principal formulas of
logical steps. Concretely the steps of our proof search algorithm will be composed
of the following macro rules:

(9)
R |Γ, v : A → B ⇒ ∆, v : A R |Γ, v : A → B, v : B ⇒ ∆

→l

R |Γ, v : A → B ⇒ ∆

R |Γ, v : A ⇒ ∆, v : A → B, v : B
→r

R |Γ ⇒ ∆, v : A → B

R |Γ, v : ∀XA, v : A[C/X] ⇒ ∆
∀l

R |Γ, v : ∀XA ⇒ ∆

R |Γ ⇒ ∆, v : ∀XA, v : A[P/X]
∀r P fresh

R |Γ ⇒ ∆, v : ∀XA

R, uRv |Γ, u : □A, v : A ⇒ ∆
□l

R, uRv |Γ, u : □A ⇒ ∆

R, vRw |Γ ⇒ ∆, v : □A,w : A
□r w fresh

R |Γ ⇒ ∆, v : □A

R, uRv |Γ, v : ■A, u : A ⇒ ∆
■l

R, uRv |Γ, v : ■A ⇒ ∆

R, uRv |Γ ⇒ ∆, v : ■A, u : A
■r u fresh

R |Γ ⇒ ∆, v : ■A

As mentioned, these macro rules are readily derivable from the ones of ℓKt2, using
the structural rules. Let us point out already that the left rules above are even
derivable in mℓIKt2 (but not the right ones). The only other rules we (implicitly)
apply during proof search are weakenings, wl,wr, to delete extra copies of a la-
belled formula as already mentioned. We shall omit mention of such bookeeping
henceforth.

Notice that these rules are monotone: bottom-up, sequents only get bigger.
Let us point out two important consequences of this:

• These rules are also invertible: provability of the conclusion implies prov-
ability of the premisses (by weakening).

9Prawitz used a different method via transfinite recursion in his original work on second order
logic [Pra68a], but we find the possible values approach cleaner.
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• Any infinite branch of macro steps above has a well-defined (possibly in-
finite) limit by taking unions of relational contexts, unions of LHSs, and
unions of RHSs.

5.1.3. Enumerating steps by activity. Now, fixing a conclusion sequent, note that
the steps in Eq. (9) are determined by the choice of principal and auxiliary labelled
formulas, as well as which side the principal formula occurs on. Let us call these
data the activity of an inference step. As activities are determined by only finite
data, they are only countably many so may be enumerated by ω. The idea of our
proof search algorithm will be to apply each of these steps in turn, so that every
possible labelled formula on either side of a sequent is eventually principal. To
ensure we do not miss any possible steps, we shall employ an enumeration with
sufficient redundancy:

Convention 5.2 (Adequate enumeration). We assume an enumeration (αi)i<ω of
activities in which every possible activity occurs infinitely often.

Remark 5.3 (Activity vs inference step). Note that distinct inference steps may
have the same activity, as their contexts may be different, but once a concluding
sequent is fixed the activity determines at most one inference step. It may also
determine no correct inference step at all, e.g. if the corresponding principal formula
does not occur in the sequent, or only appears on the wrong side.

5.2. The proof search branch. Let us set up some notation for convenience.
We shall write S,S ′ etc. to vary over labelled sequents. If S = R |Γ ⇒ ∆ and
S ′ = R′ |Γ′ ⇒ ∆′, we write simply S ⊆ S ′ if R ⊆ R′, Γ ⊆ Γ′ and ∆ ⊆ ∆′. For
a set of sequents {Si = Ri |Γi ⇒ ∆i}i∈I , we write simply

⋃
i∈I

Si for the sequent⋃
i∈I

Ri |
⋃
i∈I

Γi ⇒
⋃
i∈I

∆i. We shall typically reserve this union operation for when

we take limits of chains of sequents under ⊆.
For the remainder of this section let us fix a sequent S0 = R0 |Γ0 ⇒ ∆0 that is

unprovable in ℓKt2, i.e. ℓKt2 ̸⊢ S0.

Definition 5.4 (Proof search branch). We extend S0 to a sequence S = (Si)i<ω

of unprovable sequents defined as follows:

• If no inference step has conclusion Si and activity αi then just set Si+1 := Si

(so Si+1 remains unprovable).
• Otherwise let ri be the inference step with conclusion Si and activity αi.
• By assumption that Si is unprovable, some premiss of ri must be unprov-
able. We set Si+1 to be some unprovable premiss.10

As mentioned earlier, since the macro rules of Eq. (9) are monotone, bottom-up,
we indeed have a chain S0 ⊆ S1 ⊆ · · · . So we set Sω = Rω |Γω ⇒ ∆ω to be the
(infinite) limit of this sequence, i.e.

⋃
i<ω

Si.

Importantly we have:

Proposition 5.5. Γω ∩∆ω = ∅.

Proof. If Γω and ∆ω intersect, then so does some Γi and ∆i, by monotonicity. This
would mean that Si is derivable by an id step (and weakenings), contradicting its
unprovability. ✓

10It does not matter which, but for concreteness, we may take the leftmost if there is a choice.
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5.3. Towards a countermodel: a pre-structure from proof search. The
proof search branch gives rise to a pre-structure, that is a structure lacking a domain
of sets (and thus also an interpretation of propositional symbols), that underlies
our eventual countermodel for S0. Let us define this now:

Definition 5.6 (Pre-structure). We define R− by the following data:

• The set of worlds is just Wl.
• We define the accessibility relation to just be Rω, i.e. vRωw if vRw ∈ Rω.

When S0 contains only first-order formulas (i.e. without quantifiers), the pre-
structure above easily induces a bona fide countermodel (see, e.g., [Tak87, Theo-
rem 8.17] for a similar exposition for first-order intuitionistic predicate logic). The
key difficulty for expanding R− in our second-order setting is to identify an appro-
priate domain of predicates/sets.

5.4. Extracting a partial valuation. As in other countermodel constructions,
the idea is to find a structure that forces all of Γω true and all of ∆ω false. This
desideratum can be used to constrain what predicates may be, but the issue is
that this information is incomplete: the truth values of some formulas are not
determined by Γω,∆ω. Attempting to fix them one way or another may lead to
inconsistencies, in particular due to contravariance of →.

Schütte dubbed such an assignment a semivaluation in [Sch60], or partial val-
uation in [Sch77].11 This concept was further expanded into a bona fide 3-valued
semantics of cut-free proofs by Girard [Gir87]. We stop short of working explicitly
with partial valuations, for the sake of reducing the technical development, rather
simply using predicates for truth and falsity induced by the LHS Γω and RHS ∆ω,
respectively, of the proof search branch S.

Our construction of the proof search branch is designed to guarantee the follow-
ing crucial property, corresponding to Schütte’s definition of semivaluation [Sch60,
Definition 6.1] (later called partial valuation in [Sch77, Section 11.2]):

Proposition 5.7 (Partial valuation). We have the following:

(1) v : A → B ∈ Γω =⇒ (v : A ∈ ∆ω or v : B ∈ Γω).
(2) v : A → B ∈ ∆ω =⇒ (v : A ∈ Γω and v : B ∈ ∆ω)
(3) v : □A ∈ Γω =⇒ ∀w ∈ Wl (vRωw =⇒ w : A ∈ Γω)
(4) v : □A ∈ ∆ω =⇒ ∃w ∈ Wl (vRωw and w : A ∈ ∆ω)
(5) v : ■A ∈ Γω =⇒ ∀u ∈ Wl (uRωv =⇒ u : A ∈ Γω)
(6) v : ■A ∈ ∆ω =⇒ ∃u ∈ Wl (uRωv and u : A ∈ ∆ω)
(7) v : ∀XA ∈ Γω =⇒ ∀C ∈ Fm v : A[C/X] ∈ Γω.
(8) v : ∀XA ∈ ∆ω =⇒ ∃C ∈ Fm v : A[C/X] ∈ ∆ω.

Proof. If v : A ∈ Γω then v : A ∈ Γi for some i. Now, by the definition of the proof
search branch and the enumeration of activities we take, cf. Convention 5.2, any
arbitrary activity α with v : A principal will be applied at some stage j > i. The
properties above simply exhaust all the possibilities of activity for a given principal
formula, and possibilities for extension of the proof search branch from i. ✓

11Beware that what Schütte calls ‘partial valuation’ in [Sch60] is slightly different, comprising
a sort of expansion of a semivaluation so that it is closed under semantic clauses. We keep to the

current terminology as it seems more suggestive and should be unlikely to cause confusion.
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Returning to Schütte’s partial valuations, we can think of v : A ∈ Γω as indicat-
ing that A is true at world v, with respect to R− (or an appropriate expansion of
it by predicates). Symmetrically v : A ∈ ∆ω indicates that A is false at world v.

5.5. A compatible countermodel via possible values. To define an appropri-
ate domain of sets, Prawitz’ idea in [Pra68b] was to simply take all possibilities
consistent with the proof search branch, by way of so-called possible values. We
shall follow a similar idea here, though again we avoid explicitly defining possible
values. Recall that we have already fixed an unprovable sequent S0 and extended
it to the proof search branch S = (Si)i<ω.

Definition 5.8 (Possible extensions). A possible extension of a formula C (with
respect to S) is a set C ⊆ Wl s.t.:

• v : C ∈ Γω =⇒ v ∈ C; and,
• v : C ∈ ∆ω =⇒ v /∈ C.

Write C ≥S C if C is a possible extension of C.

It is obvious but pertinent to state that every formula C admits a minimal
(possible) extension ⌊C⌋ := {v ∈ Wl | v : C ∈ Γω}. A unirelational structure
may now be obtained from our pre-structure by allowing all possible extensions as
sets:

Definition 5.9 (Countermodel). We expand R− into a structure R by including
the following missing data:

• The domain of sets W ⊆ P(Wl) includes all possible extensions (of all
formulas).

• We set PR := ⌊P ⌋ for each P ∈ Pr.12

The key technical result we need about this structure relates the evaluation of
formulas over possible extensions to the desideratum that Γω be true and ∆ω be
false. Such compatibility with the partial valuation induced by proof search is what
will allow us to show that R is, in fact, comprehensive.

Lemma 5.10 (Compatibility). For formulas A(X⃗) (all free variables among X⃗ =

X1, . . . , Xn) and C⃗ = C1, . . . , Cn we have:

(1) v : A(C⃗) ∈ Γω =⇒ v ⊨R A(⃗C) whenever C⃗ ≥S C⃗.

(2) v : A(C⃗) ∈ ∆ω =⇒ v ̸⊨R A(⃗C) whenever C⃗ ≥S C⃗.

where we write C⃗ ≥S C⃗ for C1 ≥S C1, . . . , Cn ≥S Cn.

Before proving this, let us point out an immediate consequence. Write ⊨R

R |Γ ⇒ ∆ if R ⊆ Rω and, for each v : A ∈ Γ (or v : A ∈ ∆) we have v ⊨R A (or
v ̸⊨R A, respectively). As a special case of Lemma 5.10 above we have:

Proposition 5.11. ̸⊨R S0.

Proof of Lemma 5.10. By induction on A(X⃗):

12In fact the interpretation of propositional symbols is inconsequential, among possible exten-
sions, but we choose the minmal one for concreteness.
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• Suppose A(X⃗) = X, and fix C and C ≥S C. We have:

v : C ∈ Γω =⇒ v ∈ C since C ≥S C
=⇒ v ⊨R C by definition of ⊨R

v : C ∈ ∆ω =⇒ v /∈ C since C ≥S C
=⇒ v ̸⊨R C by definition of ⊨R

• Suppose A(X⃗) = A0(X⃗) → A1(X⃗), and fix C⃗ and C⃗ ≥S C⃗. We have:

v : A(C⃗) ∈ Γω =⇒ v : A0(C⃗) ∈ ∆ω or v : A1(C⃗) ∈ Γω by Proposition 5.7

=⇒ v ̸⊨R A0(⃗C) or v ⊨R A1(⃗C) by IH

=⇒ v ⊨R A(⃗C) by definition of ⊨R

v : A(C⃗) ∈ ∆ω =⇒ v : A0(C⃗) ∈ Γω and v : A1(C⃗) ∈ ∆ω by Proposition 5.7

=⇒ v ⊨R A0(⃗C) and v :̸⊨R A1(⃗C) by IH

=⇒ v ̸⊨R A(⃗C) by definition of ⊨R

• Suppose A(X⃗) = □A′(X⃗), and fix C⃗ and C⃗ ≥S C⃗. We have:

v : A(C⃗) ∈ Γω =⇒ ∀w ∈ Wl (vRωw =⇒ w : A′(C⃗) ∈ Γω) by Proposition 5.7

=⇒ ∀w ∈ Wl (vRωw =⇒ w ⊨R A′(⃗C)) by IH

=⇒ v ⊨R A(⃗C) by definition of ⊨R

v : A(C⃗) ∈ ∆ω =⇒ ∃w ∈ Wl (vRωw and w : A′(C⃗) ∈ ∆ω) by Proposition 5.7

=⇒ ∃w ∈ Wl (vRωw and w ̸⊨R A′(⃗C)) by IH

=⇒ v ̸⊨R A(⃗C) by definition of ⊨R

• The case when A(X⃗) = ■A′(X⃗) is similar to the one above.

• Suppose A(X⃗) = ∀XA′(X, X⃗), and fix C⃗ and C⃗ ≥S C⃗. We have:

v : A(C⃗) ∈ Γω =⇒ ∀C ∈ Fm v : A′(C, C⃗) ∈ Γω by Proposition 5.7

=⇒ ∀C ∈ Fm∀C ≥S C v ⊨R A′(C, C⃗) by IH

=⇒ v ⊨R A(⃗C) by definition of ⊨R

v : A(C⃗) ∈ ∆ω =⇒ ∃C ∈ Fm v : A′(C, C⃗) ∈ ∆ω by Proposition 5.7

=⇒ ∃C ∈ Fm v ̸⊨R A′(⌊C⌋, C⃗) by IH

=⇒ v ̸⊨R A(⃗C) by definition of ⊨R ✓

5.6. Putting it all together: comprehensivity via a total valuation. In
light of Proposition 5.11, for our completeness result it remains to show that R is
comprehensive. Since R is already defined, we can do this in a somewhat backwards
way:

Definition 5.12 (Interpreting comprehension). Define [C] := {v ∈ Wl | v ⊨R C}.
Now, Lemma 5.10 has another useful consequence:

Proposition 5.13. [C] is a possible extension of C, for all formulas C.

Proof. Simply set A(X⃗) = C and C⃗ = ∅ = X⃗ in Lemma 5.10. ✓

Corollary 5.14. R is comprehensive, and so is a relational model.

In the terminology of Schütte, [−] corresponds to a total valuation of formulas
[Sch60, Definition 7.2]. Note the crucial use of impredicativity here: we are only
able to define [C] in terms of a structure, R, that includes all possible extensions,
including [C] itself.

We have now established the main result of this section:
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Proof of Theorem 5.1. By contraposition. Set S0 := · | · ⇒ v : A throughout this
section and conclude by Corollary 5.14 and Proposition 5.11. ✓

6. Completeness via proof search: the intuitionistic case

We now turn to the intuitionistic case for cut-free completeness. As we have
presented the classical case in detail, we shall focus in this section on how the
intuitionistic case deviates from the classical one. Let us summarise the key points:

• Not all rules of ℓIKt2 or mℓIKt2 can be made invertible. For the former this
is because we lack right structural rules and so, e.g., →l is not invertible.
For the latter this is because the right logical rules are not invertible.

• As a result, instead of a proof search branch, we will construct a proof search
tree. This is unsurprising given the shape of intuitionistic structures, which
are partially ordered.

• We will need to deal with limit sequents at each branching point of the
countermodel construction, so our proof system must now work with gen-
uinely infinite sequents.

The obtention of an appropriate proof search tree from which we can extract
countermodels is facilitated by working directly with the calculus mℓIKt2, instead of
ℓIKt2. Cut-free completeness results for multi-succedent calculi have also appeared
in [Tak87, pp. 52-59] for first-order intuitionistic predicate logic over Kripke models,
and in [Pra70] for second-order intuitionistic predicate logic over Beth models. Note
that, in our setting we furthermore recover cut-free completeness of the single-
succedent calculus ℓIKt2 thanks to Proposition 4.5, even over all birelational models
thanks to Proposition 3.11. In summary, the main results of this section are:

Theorem 6.1 (Intuitionistic cut-free completeness). ∀P ⊨P A =⇒ mℓIKt2 \ cut ⊢ A.

Corollary 6.2. ∀B ⊨B A =⇒ ℓIKt2 \ cut ⊢ A.

The remainder of this section is structured as the previous one.

6.1. Setting up proof search. We now construe mℓIKt2 over (possibly) infinite
sequents R |Γ ⇒ ∆, where some/all of R,Γ,∆ may be (countably) infinite. We
say that such a sequent is provable in, or a theorem of, mℓIKt2 if there are finite
R′ ⊆ R, Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that R′ |Γ′ ⇒ ∆′ is provable in mℓIKt2, in the
usual sense. Note that infinitude of sequents does not affect the fact that inference
steps on them are still determined by activity of finite data, cf. Convention 5.2.

All the discussion of Section 5.1 still applies when building proofs of mℓIKt2,
however we shall consider only the left macro rules of Eq. (9), as the right ones
are not derivable in mℓIKt2. We thus restrict our enumeration of activities from
Convention 5.2 to ones with left principal formulas. Our proof search algorithm
will now alternate between two phases: the LHS phase, applying left rules, and the
RHS phase, applying right rules. We will again recast proof search as a counter-
model construction, building a predicate structure where the LHS phase determines
interpretations within an intuitionistic world and the RHS phase determines a tree
structure inducing the corresponding partial order.

A bit more formally, the LHS phase initiates at some (possibly infinite) sequent
S0 unprovable in mℓIKt2 and is defined just like the proof search branch in Defi-
nition 5.4, producing a branch (Si)i<ω of unprovable sequents. That is, at the ith

stage it applies the step with activity αi and conclusion Si (if it exists), setting Si+1
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to be some unprovable premiss (or Si, respectively). Just like in Section 5.2 this
phase is monotone: i ≤ j =⇒ Si ⊆ Sj . Thus the steps applied are also invertible,
by weakening. Writing again Sω =

⋃
i<ω

Si, note that, if Sω were provable then so

also would be Si for some i < ω, by definition of provability of infinite sequents, so
we have:

Observation 6.3. If mℓIKt2 ̸⊢ S0 and Sω is the limit of the LHS phase from S0,
then also mℓIKt2 ̸⊢ Sω.

The RHS phase initiates at a (possibly infinite) sequent S = R |Γ ⇒ ∆ un-
provable in mℓIKt2 and simply applies, bottom-up, a single right logical step of
mℓIKt2. Such a step is determined by the choice of a principal formula in ∆ (up
to renaming of fresh symbols). Again, the (only) premiss must remain unprovable.
Note that, by inspection of the right logical steps, the RHS phase always ends at a
sequent S ′ = R′ |Γ′ ⇒ ∆′ where ∆′ is a singleton. Note that the RHS phase is not
monotone for the RHS, but remains monotone for the LHS, i.e. we still haveR′ ⊇ R
and Γ′ ⊇ Γ but not, in general, ∆′ ⊇ ∆. Thus it is not, in general, invertible.

6.2. The proof search tree. As already mentioned, branching in our proof search
tree will occur in the RHS phase. Since the RHS phase is determined by a choice of
principal labelled formula in the RHS, we shall name the nodes of our tree structure
accordingly. Write σ, τ, etc. to vary over ℓFm<ω. We shall write :: for concatenation
of finite sequences. Write ⊑ for the prefix order on ℓFm<ω, i.e. σ ⊑ τ if τ can be
written as σ :: σ′. Of course, ⊑ is indeed a partial order.

For the remainder of this section we fix a (possibly infinite) sequent Sε
0 =

Rε
0 |Γε

0 ⇒ ∆ε
0 that is unprovable in mℓIKt2.

Definition 6.4 (Proof search tree). The proof search tree S consists of a tree
T ⊆ ℓFm<ω and sequents {Sσ

i = Rσ |Γσ
i ⇒ ∆σ

i }σ∈T,i<ω defined as follows:

• For any sequent Sσ
0 , apply the LHS phase to construct a chain Sσ

0 ⊆ Sσ
1 ⊆

· · · of unprovable sequents. Define Sσ = Rσ |Γσ ⇒ ∆σ to be the limit Sσ
ω

of this chain (which again must be unprovable, cf. Observation 6.3).

• For each formula v : A ∈ ∆σ, σ has a child σ :: (v : A) in T . We set Sσ::(w:A)
0

to be the (unique) premisse of the (unique, up to renaming of fresh symbols)
inference step with conclusion Sσ and principal formula v : A.

Once again, since S has been constructed to include only unprovable sequents,
like Proposition 5.5 in the classical case we importantly have:

Proposition 6.5. Γσ ∩∆σ = ∅, for all σ ∈ T .

6.3. Towards a countermodel: a pre-structure from proof search. Just like
in Section 5.3, the proof search tree S we constructed gives rise to a ‘pre-structure’,
i.e. a predicate structure lacking a domain of sets (and thus also an interpretation
of propositional symbols):

Definition 6.6 (Pre-structure). We define the predicate structure P− by:

• The set of intuitionistic worlds is just T ⊆ ℓFm<ω.
• The partial order is just the restriction of ⊑ to T .
• The set of modal worlds is just Wl.
• The accessibility relation at σ ∈ T is just Rσ, i.e. vRσw if vRw ∈ Rσ.

Note that σ ⊑ τ =⇒ Rσ ⊆ Rτ , by monotonicity in the LHS and RHS phases.
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6.4. Extracting a partial valuation. This part of the argument is similar to the
classical case, in Section 5.4, instead establishing bespoke local properties compat-
ible with our predicate semantics:

Proposition 6.7 (Partial valuation). We have the following:

(1) v : A → B ∈ Γσ =⇒ ∀τ ⊒ σ (v : A ∈ ∆τ or v : B ∈ Γτ )
(2) v : A → B ∈ ∆σ =⇒ ∃τ ⊒ σ (v : A ∈ Γτ and v : B ∈ ∆τ )
(3) v : □A ∈ Γσ =⇒ ∀τ ⊑ σ ∀w ∈ Wl (vRτw =⇒ w : A ∈ Γτ )
(4) v : □A ∈ ∆σ =⇒ ∃τ ⊒ σ ∃w ∈ Wl (vRτw and w : A ∈ ∆τ )
(5) v : ■A ∈ Γσ =⇒ ∀τ ⊒ σ ∀u ∈ Wl (uRτv =⇒ u : A ∈ Γτ )
(6) v : ■A ∈ ∆σ =⇒ ∃τ ⊒ σ ∃u ∈ Wl (uRτv and u : A ∈ ∆τ )
(7) v : ∀XA ∈ Γσ =⇒ ∀τ ⊒ σ ∀C ∈ Fm v : A[C/X] ∈ Γτ

(8) v : ∀XA ∈ ∆σ =⇒ ∃τ ⊒ σ ∃C ∈ Fm v : A[C/X] ∈ ∆τ

Proof. We consider each case separately:

(1) Let τ ⊒ σ. By monotonicity we have v : A → B ∈ Γτ , and so either
v : A ∈ ∆τ or v : B ∈ Γτ , depending on which direction Γσ takes at the
corresponding →l step.

(2) If v : A → B ∈ ∆σ then we can just set τ = σ :: (v : A → B).
(3) Let τ ⊒ σ and vRτw. By monotonicity we have v : □A ∈ Γτ , and so also

w : A ∈ Γτ by the corresponding □l step.
(4) If v : □A ∈ ∆σ, we can just set τ = σ :: (v : □A) and w the fresh world

variable of the corresponding □r step.
(5) (Similar to (3)).
(6) (Similar to (4)).
(7) Let τ ⊒ σ and C ∈ Fm. By monotonicity we have v : ∀XA ∈ Γτ , and so

also v : A[C/X] ∈ Γτ by the corresponding ∀l step.
(8) If v : ∀XA ∈ ∆σ, we can just set τ = σ :: (v : ∀XA) and C the propositional

eigenvariable of the corresponding ∀r step. ✓

6.5. A compatible countermodel via possible values. We continue to adapt
the machinery of Section 5 to the intuitionistic setting. Recall that we have al-
ready fixed an unprovable sequent Sε

0 and extended it to the proof search tree S,
cf. Definition 6.4, in particular including the limit sequents (Sσ)σ∈T . We duly adapt
Definition 5.8 to the intuitionistic setting:

Definition 6.8 (Possible extensions). A possible extension of a formula C (wrt
S) is a family C = {Cσ ⊆ Wl}σ∈T such that:

• σ ⊑ τ =⇒ Cσ ⊆ Cτ ; and,
• v : C ∈ Γσ =⇒ v ∈ Cσ; and,
• v : C ∈ ∆σ =⇒ v /∈ Cσ.

Let us write C ≥S C if C is a possible extension of C, wrt S.

Note that every formula C still admits a minimal (possible) extension ⌊C⌋
with ⌊C⌋σ := {v ∈ Wl | v : C ∈ Γσ}. Note that monoticity wrt ⊑ is inherited
from monotonicity of LHSs during proof search: if σ ⊑ τ then Γσ ⊆ Γτ , and so
⌊C⌋σ ⊆ ⌊C⌋τ , for any formula C. Again we obtain a predicate structure whose sets
include all possible extensions:

Definition 6.9 (Countermodel). We expand P− into a structure P by including
the following missing data:
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• The classW of modal predicates include all possible extensions all formulas.
For each extension C, the interpretation Cσ is as defined in Definition 6.8.

• We identify each P ∈ Pr with the possible extension ⌊P ⌋.

Once again, we need a key compatibility result:

Lemma 6.10 (Compatibility). For formulas A(X⃗) and C⃗ we have:

(1) v : A(C⃗) ∈ Γσ =⇒ σ, v ⊨P A(⃗C) whenever C⃗ ≥S C⃗.

(2) v : A(C⃗) ∈ ∆σ =⇒ σ, v ̸⊨P A(⃗C) whenever C⃗ ≥S C⃗.

Once again, before proving this, let us point out an immediate consequence.
Write σ ⊨P R |Γ ⇒ ∆ if R ⊆ Rσ and, for each v : A ∈ Γ (or v : A ∈ ∆) we have
σ, v ⊨P A (or σ, v ̸⊨P A, respectively). As a special case of the Lemma 6.10 above
we have:

Proposition 6.11. ε ̸⊨P Sε
0 .

Proof of Lemma 6.10. By induction on A(X⃗):

• Suppose A(X⃗) = X, and fix C and C ≥S C. We have:

v : C ∈ Γσ =⇒ v ∈ Cσ since C ≥S C
=⇒ σ, v ⊨P C by definition of ⊨P

v : C ∈ ∆σ =⇒ v /∈ Cσ since C ≥S C
=⇒ σ, v ̸⊨P C by definition of ⊨P

• Suppose A(X⃗) = A0(X⃗) → A1(X⃗), and fix C⃗ and C⃗ ≥S C⃗. We have:

v : A(C⃗) ∈ Γσ =⇒ ∀τ ⊒ σ
[
v : A0(C⃗) ∈ ∆τ or v : A1(C⃗) ∈ Γτ

]
by Proposition 6.7

=⇒ ∀τ ⊒ σ
[
τ, v ̸⊨P A0(⃗C) or τ, v ⊨P A1(⃗C)

]
by IH

=⇒ σ, v ⊨P A(⃗C) by definition of ⊨P

v : A(C⃗) ∈ ∆σ =⇒ ∃τ ⊒ σ
[
v : A0(C⃗) ∈ Γτ and v : A1(C⃗) ∈ ∆τ

]
by Proposition 6.7

=⇒ ∃τ ⊒ σ
[
τ, v ⊨P A0(⃗C) and τ, v ̸⊨P A1(⃗C)

]
by IH

=⇒ σ, v ̸⊨P A(⃗C) by definition of ⊨P

• Suppose A(X⃗) = □A′(X⃗), and fix C⃗ and C⃗ ≥S C⃗. We have:

v : A(C⃗) ∈ Γσ =⇒ ∀τ ⊒ σ ∀w ∈ Wl
[
vRτw =⇒ w : A′(C⃗) ∈ Γτ

]
by Proposition 6.7

=⇒ ∀τ ⊒ σ ∀w ∈ Wl
[
vRτw =⇒ τ, w ⊨P A′(⃗C)

]
by IH

=⇒ σ, v ⊨P A(⃗C) by definition of ⊨P

v : A(C⃗) ∈ ∆σ =⇒ ∃τ ⊒ σ ∃w ∈ Wl
[
vRτw and w : A′(C⃗) ∈ ∆τ

]
by Proposition 6.7

=⇒ ∃τ ⊒ σ ∃w ∈ Wl
[
vRτw and τ, w ̸⊨P A′(⃗C)

]
by IH

=⇒ σ, v ̸⊨P A(⃗C) by definition of ⊨P

• The case when A(X⃗) = ■A′(X⃗) is similar to the one above.
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• Suppose A(X⃗) = ∀XA′(X, X⃗), and fix C⃗ and C⃗ ≥S C⃗. We have:

v : A(C⃗) ∈ Γσ =⇒ ∀τ ⊒ σ ∀C ∈ Fm v : A′(C, C⃗) ∈ Γτ by Proposition 6.7

=⇒ ∀τ ⊒ σ ∀C ∈ Fm∀ C ≥S C τ, v ⊨P A′(C, C⃗) by IH

=⇒ σ, v ⊨P A(⃗C) by definition of ⊨P

v : A(C⃗) ∈ ∆σ =⇒ ∃τ ⊒ σ ∃C ∈ Fm v : A′(C, C⃗) ∈ ∆τ by Proposition 6.7

=⇒ ∃τ ⊒ σ ∃C ∈ Fm τ, v ̸⊨P A′(⌊C⌋, C⃗) by IH

=⇒ σ, v ̸⊨P A(⃗C) by definition of ⊨P ✓

6.6. Putting it all together: comprehensivity via a total valuation. Again,
in light of Proposition 6.11, for our completeness result it remains to show that P is
comprehensive. We take the same impredicative approach as the classical setting.

Definition 6.12 (Interpreting comprehension). Define [C] := {[C]σ}σ∈T where:

[C]σ := {v ∈ Wl | σ, v ⊨P C}

Now, Lemma 6.10 has another useful consequence:

Proposition 6.13. [C] is a possible extension of C, with respect to S.

Proof. Simply set A(X⃗) = C and C⃗ = ∅ in Lemma 6.10. ✓

Corollary 6.14. P is comprehensive, and so is a predicate model.

We have now established the main result of this section:

Proof of Theorem 6.1. By contraposition. Set Sε
0 := · | · ⇒ v : A throughout this

section and conclude by Corollary 6.14 and Proposition 6.11. ✓

7. Simulating labelled proofs axiomatically

The goal of this section is to establish the soundness of the labelled sequent
calculi ℓIKt2 and ℓKt2, wrt. IKt2 and Kt2 respectively. To this end we show (i)
each sequent can be interpreted as a formula of our syntax; and (ii) each rule can
be interpreted as an admissible rule of the axiomatisation. The main result of this
section is:

Theorem 7.1 (Axiomatic soundness). We have the following:

(1) If ℓIKt2 ⊢ A then IKt2 ⊢ A.
(2) If ℓKt2 ⊢ A then Kt2 ⊢ A.

7.1. Formula interpretation. A polytree is a directed acyclic graph whose un-
derlying undirected graph is a tree. As a consequence, it is connected, i.e., there
exists exactly one path of undirected edges between any pair of distinct nodes. A
labelled polytree sequent is a labelled sequent R |Γ ⇒ ∆ where R encodes a
labelled polytree and all the labels occurring in Γ and ∆ are connected by R (as
an undirected graph).

By [CLRT21, Lemma 5.2] any derivation in ℓKt of a labelled polytree sequent
(and a fortiori of a labelled formula) contains only labelled polytree sequents, which
generalises to our systems:

Lemma 7.2. Any labelled polytree sequent provable in ℓKt2 (or ℓIKt2) has a deriva-
tion in ℓKt2 (or ℓIKt2 respectively) that contains only labelled polytree sequents.
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Henceforth we will work with only labelled polytree sequents. This is used
in [CLRT21] to translate labelled sequents into nested sequents, which on the other
hand can readily be interpreted into the tense language [GPT11]. We define here
a direct interpretation of labelled polytree sequents into tense formulas.

We write u
R
↭ v to indicate that u and v are connected in the underlying

undirected graph encoded by R. If uRv ∈ R (or vRu ∈ R), we write Ru\v for the
set of atoms xRy ∈ R such that x is connected to u in R \ {uRv} (or R \ {vRu}
respectively).

Definition 7.3 (Left interpretation). For a label u occuring in R or Γ, the left
(formula) interpretation lfmu(R |Γ) at u is given as:∧

u:B∈Γ

B ∧
∧

uRv∈R

^lfmv(Rv\u |Γ) ∧
∧

vRu∈R

_lfmv(Rv\u |Γ)

If R = ∅ or Γ = ∅ this is well-defined, and we set lfmu(· | ·) = ⊤. Note that
this translation utilises the definition of ∧, ⊤, ^ and _ in terms of second-order
quantifiers given in Eqs. (2) and (3).

Definition 7.4 (Right interpretation). For a label u occurring in R or ∆, the
right (formula) interpretation rfmu(R |∆) at u is:∨

u:B∈∆

B ∨
∨

uRv∈R

□rfmv(Rv\u |∆) ∨
∨

vRu∈R

■rfmv(Rv\u |∆)

If R = ∅ or ∆ = ∅ this is well-defined, and we set rfmu(· | ·) = ⊥. Note that this
translation utilises the definition of ∨ and ⊥ in terms of second-order quantifiers
given in Eq. (2).

Definition 7.5 (Classical formula interpretation). For a label u in R, Γ or ∆,
the (classical) formula interpretation at u cfmu(R |Γ ⇒ ∆) at u is given as:
lfmu(R |Γ) → rfmu(R |∆)

In the intuitionistic setting, the asymmetry between the LHS and RHS of a
sequent means that the formula interpretation requires a more careful analysis of
the polytree structure of R:

Definition 7.6 (Intuitionistic formula interpretation). For a label u occurring in
R or Γ, or for u = w, the (intuitionistic) formula interpretation ifmu(R |Γ ⇒
w : A) at u is defined as:

• lfmw(R |Γ) → A, if u = w.
• lfmu(Ru\v |Γ) → □ifmv(Rv\u |Γ ⇒ w : A), if there exists v such that

v
R\{uRv}

↭ w and uRv ∈ R.
• lfmu(Ru\v |Γ) → ■ifmv(Rv\u |Γ ⇒ w : A), if there exists v such that

v
R\{vRu}

↭ w and vRu ∈ R.

If R = ∅, this is only defined if u = w, e.g., ifmw(· | ⇒ w : A) = A.

Fact 7.7. A property of the left interpretation:

• lfmu(R |Γ, u : B) = lfmu(R |Γ) ∧B

• and if there is x such that uRx ∈ R and x
R
↭ w lfmu(R |Γ, w : B) =

lfmu(Ru\x |Γ, w : B) ∧ ^lfmx(Rx\u |Γ, w : B)

• and if there is x such that xRu ∈ R and x
R
↭ w lfmu(R |Γ, w : B) =

lfmu(Ru\x |Γ, w : B) ∧ _lfmx(Rx\u |Γ, w : B)
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Fact 7.8. If v does not occur in R:

• lfmu(R |Γ, v : A) = lfmu(R |Γ)
• ifmu(R |Γ, v : A ⇒ w : C) = ifmu(R |Γ ⇒ w : C)

7.2. Formula contexts. As the formula translation changes due to the position
of the succedent formula, we define two kinds of “formula contexts”. These are
formulas of a certain shape with one unique atom {}, called the hole which can be
substituted for a formula. The following kind of formula context has the shape of
a left-hand-side interpretation. We call the following a conjunction context.

F∧{} ::= {} | A ∧ F∧{} | ^F∧{} | _F∧{}
We write F∧{A} when substituting for the hole in F∧{} the formula A. We

also define the empty substitution F∧{∅} as F∧{⊤}. We also write F∧ instead of
F∧{∅}.

For the full formula interpretation, we define an implication context F→{}:
F→{} ::= {} | A → F→{} | □F→{} | ■F→{}

Note that we can translate between these contexts as follows:

• F∧{} = {} iff F→{} = {}
• F∧{} = A ∧ F∧′{} iff F→{} = A → F→′{}
• F∧{} = ^F∧′{} iff F→{} = □F→′{}
• F∧{} = _F∧′{} iff F→{} = ■F→′{}

Substitution for implication contexts F→{A} is defined by substituting the for-
mula A for the hole (here, we do not need substitution for the empty context).

This allows us to translate these contexts into one another which will be helpful
for the rules cut and →l which swap the label of the succedent formula.

Here we show that the formula interpretation of a sequent can be written in the
form of contexts.

Lemma 7.9. Let u be a label in the support of R. Then, there exists F such that

(1) lfmu(R |Γ, v : A) = F∧{A}; and
(2) ifmu(R |Γ ⇒ v : A) = F→{A}.

Proof. We proceed by induction on the path u
R
↭ v

For the base case we have u = v.
lfmu(R |Γ, u : A) = lfmu(R |Γ)∧A and ifmu(R |Γ ⇒ u : A) = lfmu(R |Γ)→A

So we can set F∧{} = lfmu(R |Γ)∧{} for (1), and therefore F→{} = lfmu(R |Γ)→
{} for (2).

For the inductive case there is a label x such that uRx or xRu, and x
R
↭ v.

lfmu(R |Γ, v : A) = lfmu(Ru\x |Γ) ∧ �lfmx(Rx\u |Γ, v : A) and ifmu(R |Γ ⇒
w : B) = lfmu(Ru\x |Γ) → ⊡ifmx(Rx\u |Γ ⇒ w : B) where � = ^ and ⊡ = □ if
uRx ∈ R, and � = _ and ⊡ = ■ if xRu ∈ R.

By the inductive hypothesis there is F1 s.t. lfmx(Rx\u |Γ, v : A) = F∧
1 {A} and

ifmx(Rx\u |Γ ⇒ v : A) = F→
1 {A}

So we can set F∧{} = lfmu(Ru\x |Γ) ∧ �F∧
1 {} for (1), and therefore F→{} =

lfmu(Ru\x |Γ)→ ⊡F→
1 {} for (2). ✓

Lemma 7.10. Given a sequent R |Γ, v : A ⇒ w : B, with label u in the support
of R. Then, there exist F1, F2, F3 such that

(1) ifmu(R |Γ, v : A ⇒ w : B) = F→
1 {F∧

2 {A}→ F→
3 {B}}; and
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(2) IKt2 ⊢ ifmu(R |Γ, w : B ⇒ v : A) ↔ F→
1 {F∧

3 {B}→ F→
2 {A}}.

Proof. Proof of (1): We proceed by induction on the path u
R
↭ w.

• u = w: ifmw(R |Γ, v : A ⇒ w : B) = lfmw(R |Γ, v : A)→B
Using Lemma 7.9(1), there is F2 s.t. lfmu(R |Γ, v : A) = F∧

2 {A}. So,

ifmw(R |Γ, v : A ⇒ w : B) = F∧
2 {A}→B

• there is a label x such that uRx or xRu ∈ R and x
R
↭ w: then, there are

two possible cases:
– v ∈ Ru\x: then, by Fact 7.8

ifmu(R |Γ, v : A ⇒ w : B)

= lfmu(Ru\x |Γ, v : A)→ ⊡ifmx(Rx\u |Γ ⇒ w : B)

where ⊡ = □ if uRx ∈ R and ⊡ = ■ if xRu ∈ R.
Using Lemma 7.9(1), there is F2 s.t. lfmu(Ru\x |Γ, v : A) = F∧

2 {A}.
Using Lemma 7.9(2), there is F ′

3 s.t. ifmw1(Rx\u |Γ ⇒ w : B) =
F ′→

3 {B}. Set F→
3 { } = ⊡F ′→

3 { } and we get

ifmu(R |Γ, v : A ⇒ w : B) = F∧
2 {A}→ F→

3 {B}

– v ∈ Rx\u: then, by Fact 7.8

ifmu(R |Γ, v : A ⇒ w : B)

= lfmu(Ru\x |Γ)→ ⊡ifmx(Rx\u |Γ, v : A ⇒ w : B)

where ⊡ = □ if uRx ∈ R and ⊡ = ■ if xRu ∈ R.
By the inductive hypothesis, there exist F ′

1, F2, F3 s.t.

ifmx(Rx\u |Γ, v : A ⇒ w : B) = F ′→
1 {F∧

2 {A}→ F→
3 {B}}

Set F→
1 { } = lfmu(Ru\x |Γ)→ ⊡F ′→

1 { } and we get

ifmu(R |Γ, v : A ⇒ w : B) = F→
1 {F∧

2 {A}→ F→
3 {B}}

Proof of (2): We proceed by induction on the path u
R
↭ w.

• u = w:
– either u = v:

ifmu(R |Γ, u : A ⇒ u : B) = lfmu(R |Γ, u : A)→B

= (lfmu(R |Γ) ∧A)→B

ifmu(R |Γ, u : B ⇒ u : A) = lfmu(R |Γ, u : B)→A

= (B ∧ lfmu(R |Γ))→A

↔ B → lfmu(R |Γ)→A

– or there is a label y such that uRy or yRu, and y
R
↭ v

ifmu(R |Γ, v : A ⇒ u : B) = lfmu(Ru\x |Γ, v : A)→B

= (lfmu(Ru\x\y |Γ) ∧}lfmy(Ry\u |Γ, v : A))→B
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ifmu(R |Γ, w : B ⇒ v : A)

= lfmu(Ru\y |Γ, w : B)→ ⊞ifmy(Ry\u |Γ ⇒ v : A)

= (lfmu(Ru\x\y |Γ) ∧B)→ ⊞ifmy(Ry\u |Γ ⇒ v : A)

↔ B → lfmu(Ru\x\y |Γ)→ ⊞ifmy(Ry\u |Γ ⇒ v : A)

where ⊞ = □ if uRy ∈ R and ⊞ = ■ if yRu ∈ R.

• there is a label x such that uRx or xRu ∈ R and x
R
↭ w and v ∈ Ru\x:

– either u = v:

ifmv(R |Γ, v : A ⇒ w : B)

= lfmv(Rv\x |Γ, v : A)→ ⊡ifmx(Rx\v |Γ ⇒ w : B)

= (lfmv(Rv\x |Γ) ∧A)→ ⊡ifmx(Rx\v |Γ ⇒ w : B)

ifmv(R |Γ, w : B ⇒ v : A)

= lfmv(R |Γ, w : B)→A

= (�lfmx(Rx\v |Γ, w : B) ∧ lfmv(Rv\x |Γ))→A

↔ �lfmx(Rx\v |Γ, w : B)→ lfmv(Rv\x |Γ)→A

– or there is a label y such that uRy or yRu, and y
R
↭ v

ifmu(R |Γ, v : A ⇒ w : B)

= lfmu(Ru\x |Γ, v : A)→ ⊡ifmx(Rx\u |Γ ⇒ w : B)

= (lfmu(Ru\x\y |Γ) ∧}lfmy(Ry\u |Γ, v : A))

→ ⊡ifmx(Rx\u |Γ ⇒ w : B)

ifmu(R |Γ, w : B ⇒ v : A)

= lfmu(Ru\y |Γ, w : B)→ ⊞ifmy(Ry\u |Γ ⇒ v : A)

= (lfmu(Ru\x\y |Γ) ∧ �lfmx(Rx\u |Γ, w : B))

→ ⊞ifmy(Ry\u |Γ ⇒ v : A)

↔ �lfmx(Rx\u |Γ, w : B)

→ lfmu(Ru\x\y |Γ)→ ⊞ifmy(Ry\u |Γ ⇒ v : A)

where ⊡ = □ if uRx ∈ R and ⊡ = ■ if xRu ∈ R, and where ⊞ = □ if
uRy ∈ R and ⊞ = ■ if yRu ∈ R.

• there is a label x such that uRx or xRu ∈ R and x
R
↭ w and v ∈ Rx\u:

ifmu(R |Γ, v : A ⇒ w : B)

= lfmu(Ru\x |Γ)→ ⊡ifmx(Rx\u |Γ, v : A ⇒ w : B)

= lfmu(Ru\x |Γ)→ ⊡F ′→
1 {F∧

2 {A}→ F→
3 {B}}

where ⊡ = □ if uRx ∈ R and ⊡ = ■ if xRu ∈ R.
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By inductive hypothesis, ifmx(Rx\u |Γ, w : B ⇒ v : A) is equivalent to
F ′→
1 {F∧

3 {B}→ F→
2 {A}}, so:

ifmu(R |Γ, w : B ⇒ v : A)

= lfmu(Ru\x |Γ)→ ⊡ifmx(Rx\u |Γ, w : B ⇒ v : A)

↔ lfmu(Ru\x |Γ)→ ⊡F ′→
1 {F∧

3 {B}→ F→
2 {A}}

✓

7.3. Technical lemmas. The following lemmas capture the behaviour of contexts
which we need for proving the soundness of the sequent rules. Note that we can
view most of these lemmas as generalisations of modal rules and axioms such as
necessitation or functoriality of modalities.

Lemma 7.11. If IKt2 ⊢ A then IKt2 ⊢ F→{A}.

Proof. We proceed by induction over the structure of F→{ }.
The base case F→{} = {} follows immediately.
If F→{A} = B → F∧

1 {A}: By inductive hypothesis, IKt2 ⊢ F∧
1 {A}. By mp on

the axiom F→
1 {A}→B → F→

1 {A}: IKt2 ⊢ B → F→
1 {A}.

If F→{A} = □F→
1 {A} or ■F→

1 {A}: By inductive hypothesis, IKt2 ⊢ F→
1 {A}.

By nec□ or nec■, IKt2 ⊢ □F→
1 {A} or ■F→

1 {A} respectively. ✓

Lemma 7.12. IKt2 ⊢ F→{A→B}→ F→{A}→ F→{B}

Proof. We proceed by induction on the structure of F→{}.
The base case F→{} = {} follows from the fact that (A → B) → A → B is a

theorem of IPL.
We have 3 inductive cases:

• F→{} = C → F→
1 {}. By inductive hypothesis IKt2 ⊢ F→

1 {A → B} →
F→
1 {A}→F→

1 {B}. So propositional reasoning gives IKt2 ⊢ (C→F→
1 {A→

B})→ (C → F→
1 {A})→ (C → F→

1 {B}).
• F→{} = □F→

1 {}. By the inductive hypothesis, IKt2 ⊢ F→
1 {A → B} →

F→
1 {A}→F→

1 {B}. Apply nec□ to get IKt2 ⊢ □(F→
1 {A→B}→F→

1 {A}→
F→
1 {B}). By D□ and mp IKt2 ⊢ □F→

1 {A→B}→ □F→
1 {A}→ □F→

1 {B}.
• F→{} = ■F→

1 {}. By the inductive hypothesis IKt2 ⊢ F→
1 {A → B} →

F→
1 {A}→F→

1 {B}. Apply nec■ to get IKt2 ⊢ ■(F→
1 {A→B}→F→

1 {A}→
F→
1 {B}). By D■ and mp IKt2 ⊢ ■F→

1 {A→B}→■F→
1 {A}→■F→

1 {B}. ✓

Lemma 7.13. IKt2 ⊢ F→{A→B}→ F∧{A}→ F∧{B}

Proof. We proceed by induction on the structure of F∧{}.
The base case F∧{} = {} is follows from the fact that (A→ B)→ A→ B is a

theorem of IPL.
We have 3 inductive cases:

• F∧{} = C ∧F∧
1 {} hence F→{} = C→F→

1 {}. By the inductive hypothesis,
IKt2 ⊢ F→

1 {A → B} → F∧
1 {A} → F∧

1 {B} and so propositional reasoning
gives IKt2 ⊢ (C → F→

1 {A→B})→ (C ∧ F∧
1 {A})→ (C ∧ F∧

1 {B}).
• F∧{} = ^F∧

1 {} and F→{} = □F→
1 {}. By the inductive hypothesis, IKt2 ⊢

F→
1 {A → B} → F∧

1 {A} → F∧
1 {B}. Apply nec□ to get IKt2 ⊢ □(F→

1 {A →
B} → F∧

1 {A} → F∧
1 {B}). By D□, D^ and mp IKt2 ⊢ □F→

1 {A → B} →
^F∧

1 {A}→ ^F∧
1 {B}
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• F∧{} = _F∧
1 {} and F→{} = ■F→

1 {}. By the inductive hypothesis, IKt2 ⊢
F→
1 {A→B}→F∧

1 {A}→F∧
1 {B} Apply nec■ to get IKt2 ⊢ ■(F→

1 {A→B}→
F∧
1 {A}→F∧

1 {B}). By D■, D_ and mp IKt2 ⊢ ■F→
1 {A→B}→_F∧

1 {A}→
_F∧

1 {B}. ✓

Lemma 7.14. IKt2 ⊢ F∧{A→B}→ F→{A}→ F∧{B}.

Proof. We proceed by induction on the structure of F∧{}.
The base case F∧{} = {} follows from the fact that (A → B) → A → B is a

theorem of IPL.
We have 3 inductive cases:

• F∧{} = C ∧F∧
1 {} hence F→{} = C →F→

1 {} By the inductive hypothesis,
IKt2 ⊢ F∧

1 {A → B} → F→
1 {A} → F∧

1 {B}, and so propositional reasoning
gives IKt2 ⊢ (C ∧ F∧

1 {A→B})→ (C → F→
1 {A})→ (C ∧ F→

1 {B}).
• F∧{} = ^F∧

1 {} hence F→{} = □F→
1 {}. By the inductive hypothesis,

IKt2 ⊢ F∧
1 {A→B}→F→

1 {A}→F∧
1 {B}. Apply nec□ to get IKt2 ⊢ □(F∧

1 {A→
B}→ F→

1 {A}→ F∧
1 {B}).

By axioms D^ and mp, IKt2 ⊢ ^F∧
1 {A → B} → ^(F→

1 {A} → F∧
1 {B}).

With Proposition 2.11(5), transitivity of implication gives IKt2 ⊢ ^F→
1 {A→

B}→ □F→
1 {A}→ ^F→

1 {B}.
• F∧{} = _F∧

1 {} hence F→{} = ■F→
1 {} By the inductive hypothesis, IKt2 ⊢

F∧
1 {A → B} → F→

1 {A} → F∧
1 {B}. Apply nec■ to get IKt2 ⊢ ■(F∧

1 {A →
B}→ F→

1 {A}→ F∧
1 {B}). By axioms D_ and mp, IKt2 ⊢ _F∧

1 {A→B}→
_(F→

1 {A}→F∧
1 {B}). With Proposition 2.11(6), transitivity of implication

gives IKt2 ⊢ _F→
1 {A→B}→ ■F→

1 {A}→ _F→
1 {B}. ✓

Lemma 7.15. IKt2 ⊢ (F∧{A}→ F→{B})→ F→{A→B}.

Proof. We proceed by induction on the structure of F∧{}.
The base case F∧{} = {} follows from the fact that (A → B) → A → B is a

theorem of IPL.
We have 3 inductive cases:

• F∧{} = C ∧F∧
1 {} hence F→{} = C→F→

1 {}. By the inductive hypothesis
IKt2 ⊢ (F∧

1 {A}→ F→
1 {B})→ F→

1 {A→B}
and propositional reasoning gives IKt2 ⊢ ((C∧F∧

1 {A})→(C→F→
1 {B}))→

(C → F→{A→B}).
• F∧{} = ^F∧

1 {} and F→{} = □F→
1 {}.

By the inductive hypothesis IKt2 ⊢ (F∧
1 {A}→F→

1 {B})→F→{A→B}.
Applying nec□, IKt2 ⊢ □(F∧

1 {A} → F→
1 {B} → F→

1 {A → B}). Then, D□
and mp gives IKt2 ⊢ □(F∧

1 {A}→ F→
1 {B})→ □F→

1 {A→B}. With Propo-
sition 2.11(3), transitivity of implication gives

IKt2 ⊢ (^F∧
1 {A}→ □F→

1 {A})→ □F→
1 {A→B}.

• F∧{} = _F∧
1 {} hence F→{} = ■F∧

1 {}.
By the inductive hypothesis IKt2 ⊢ (F∧

1 {A}→F→
1 {B})→F→{A→B}.

Applying nec■, IKt2 ⊢ ■(F∧
1 {A} → F→

1 {B} → F→
1 {A → B}). Then, D■

and mp gives IKt2 ⊢ ■(F∧
1 {A}→F→

1 {B})→■F→
1 {A→B}. With Proposi-

tion 2.11(4), transitivity of implication gives IKt2 ⊢ (_F∧
1 → ■F→{A})→

■F→
1 {A}. ✓

Lemma 7.16. IKt2 ⊢ ∀XF→{A} → F→{∀XA} whenever X does not occur freely
in F→{}.
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Proof. We proceed by induction on F→{}. The base case F→{} = {} follows
immediately.

We have 3 inductive cases:

• F→{} = C → F→
1 {} with X /∈ FV(C): The inductive hypothesis gives us

IKt2 ⊢ ∀XF→
1 {A}→ F→

1 {∀XA}, By combining D∀ and V IKt2 ⊢ ∀X(C →
F→
1 {A}) → C → ∀XF→

1 {A}. which by transitivity of implication gives
IKt2 ⊢ ∀X(C → F→

1 {A}) → C → F→
1 {∀XA}.

• F→{} = □F→
1 {}: By inductive hypothesis we have IKt2 ⊢ ∀XF→

1 {A} →
F→
1 {∀XA}. Applying nec□ and D□, we have IKt2 ⊢ □∀XF→

1 {A} → □F→
1 {∀XA}.

With Example 2.10, transitivity of implication gives IKt2 ⊢ ∀X□F→
1 {A} →

□F→
1 {∀XA}.

• F→{} = ■F→
1 {}: By inductive hypothesis we have IKt2 ⊢ ∀XF→

1 {A} →
F→
1 {∀XA}. Applying nec■ and D■, we have IKt2 ⊢ ■∀XF→

1 {A} → ■F→
1 {∀XA}.

With Example 2.10(4), transitivity of implication gives IKt2 ⊢ ∀X■F→
1 {A} →

■F→
1 {∀XA}. ✓

7.4. Axiomatic soundness for ℓIKt2. To prove Theorem 7.1(1), we will establish
a stronger statement:

Lemma 7.17 (Soundness of interpretation). If ℓIKt2 ⊢ R |Γ ⇒ w : A then IKt2 ⊢
ifmu(R |Γ ⇒ w : A), for u occurring in R or u = w.

This is proved by induction on the proof of R |Γ ⇒ w : A in ℓIKt2, where both
the base case and the inductive cases are provided by the following lemma. Recall
that we can assume that any sequent R |Γ ⇒ w : A occurring in a proof is polytree
labelled sequents; in particular labels in Γ ∪ {w : A} are connected by R.

Lemma 7.18 (Local soundness). Let
{R |Γi ⇒ xi : Ai}i<n

R |Γ ⇒ x : A
be a rule instance of

ℓIKt2 with n = 0, 1 or 2, and let u ∈ R or u = x.
If IKt2 ⊢ ifmu(R |Γi ⇒ xi : Ai) for all i < n then IKt2 ⊢ ifmu(R |Γ ⇒ x : A).

For most rules of ℓIKt2, the proof is similar to the one for nested sequents for
IK [Str13], but over the current formula interpretation. We highlight some of the
technicalities of the proof.

The rule →l requires some attention in the way the context is interpreted into
a formula because the two premisses can have different labels on the RHS. The
RHS label determines how the formula interpretation is defined (Definition 7.6), in
particular whether a relational atom xRy ∈ R is read as a □ (when xRy belongs to
the path from u to w) or a ^ (otherwise). For this reason, the interaction axioms
I^□ : (^A → □B) → □(A → B) and I_■ : (_A → ■B) → ■(A → B) are required in
the axiomatic proof simulating →l.

The rule □l is more subtle to handle in the tense case than it usually is in
the modal case because the indicated relational atom vRw in the context can be
read forwards or backwards when the formula interpretation is computed. For this
reason, the adjunction axioms A_□ : _□A→ A and A^■ : ^■A→ A are needed in
the axiomatic proof simulating □l.

The rule ∀r also displays some interesting interaction with the modalities when
read through the formula interpretation. In particular the distributivity axiom
∀X□A → □∀XA (Example 2.10) is required in the axiomatic proof simulating ∀r.
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The following lemmas (Lemma 7.19 to Corollary 7.31) provide the proof of
Lemma 7.18 via a case by case analysis of the rules of ℓIKt2.

Lemma 7.19 (Soundness of id). IKt2 ⊢ ifmu(R | v : A ⇒ v : A)

Proof. We can write ifmu(R | v : A ⇒ v : A) = F→{A → A} by Lemma 7.10
Clearly, A → A is a theorem of IPL and thus of IKt2. By Lemma 7.11, IKt2 ⊢
F→{A → A}. ✓

Lemma 7.20 (Soundness of wl). If IKt2 ⊢ ifmu(R |Γ ⇒ w : C) then IKt2 ⊢
ifmu(R |Γ, v : A ⇒ w : C)

Proof. We can write ifmu(R |Γ ⇒ w : C) = F→
1 {F∧

2 {⊤}→F→
3 {C}} and ifmu(R |Γ, v :

A ⇒ w : C) = F→
1 {F∧

2 {A}→ F→
3 {C}} by Lemma 7.10.

IPL ⊢ A → ⊤ so by Lemmas 7.11 and 7.13 and mp we have IKt2 ⊢ F∧
2 {A} →

F∧
2 {⊤}.
IPL ⊢ (A → B) → (B → C) → (A → C) so by substitution IKt2 ⊢ (F∧

2 {A} →
F∧
2 {⊤})→ (F∧

2 {⊤} → F→
3 {C})→ (F∧

2 {A}→ F→
3 {B}).

By Lemmas 7.11 and 7.12 and mp
IKt2 ⊢ F→

1 {F∧
2 {⊤}→ F→

3 {C}}→ F→
1 {F∧

2 {A}→ F→
3 {C}}. ✓

Lemma 7.21 (Soundness of cl). If IKt2 ⊢ ifmu(R |Γ, v : A, v : A ⇒ w : C) then
IKt2 ⊢ ifmu(R |Γ, v : A ⇒ w : C)

Proof. We can write ifmu(R |Γ, v : A, v : A ⇒ w : C) = F→
1 {F∧

2 {A∧A}→F→
3 {B}}

while ifmu(R |Γ, v : A ⇒ w : C) = F→
1 {F∧

2 {A} → F→
3 {B}} by Lemma 7.10.

As IPL ⊢ A → (A ∧ A), by Lemmas 7.11 and 7.13 and mp IKt2 ⊢ F∧
2 {A} →

F∧
2 {A ∧A}.
IPL ⊢ (A → B) → (B → C) → (A → C) hence also IKt2 ⊢ (F∧

2 {A} → F∧
2 {A ∧

A})→ (F∧
2 {A ∧A}→ F→

3 {C})→ (F∧
2 {A}→ F→

3 {C}).
By Lemmas 7.11 and 7.12 and mp we have
IKt2 ⊢ F→

1 {F∧
2 {A ∧A}→ F→

2 {B}}→ F→
1 {F∧

2 {A}→ F→
3 {B}}. ✓

Lemma 7.22 (Soundness of →r). If IKt2 ⊢ ifmu(R |Γ, v : A ⇒ v : B) then
IKt2 ⊢ ifmu(R |Γ ⇒ v : A → B)

Proof. We can write ifmu(R |Γ, v : A ⇒ v : B) = F→
1 {(A ∧ F∧

2 {⊤}) → B} while
ifmu(R |Γ ⇒ v : A → B) = F→

1 {F∧
2 {⊤} → A → B} by Lemma 7.10.

By IPL ⊢ ((A∧C) → B) → C → A → B, we have IKt2 ⊢ ((F∧
2 {⊤}∧A) → B) →

F∧
2 {⊤} → A → B,
And by Lemmas 7.11 and 7.12 and mp
IKt2 ⊢ F→

1 {(F∧
2 {⊤} ∧A) → B} → F→

1 {F∧
2 {⊤} → A → B}. ✓

Lemma 7.23 (Soundness of ∀l). If IKt2 ⊢ ifmu(R |Γ, v : A[B/X] ⇒ w : C) then
IKt2 ⊢ ifmu(R |Γ, v : ∀XA ⇒ w : C)

Proof. We can write ifmu(R |Γ, v : A[B/X] ⇒ w : C) = F→
1 {F∧

2 {A[B/X]} →
F→
3 {C}} and ifmu(R |Γ, v : ∀XA ⇒ w : C) = F→

1 {F∧
2 {∀XA} → F→

3 {C}}
by Lemma 7.10.

IKt2 ⊢ ∀XA → A[B/X], hence by Lemmas 7.11 and 7.13 and mp IKt2 ⊢
F∧
2 {∀XA} → F∧

2 {A[B/X]}.
As IPL ⊢ (A → B) → (B → C) → (A → C), we have IKt2 ⊢ (F∧

2 {∀XA} →
F∧
2 {A[B/X]}) → (F∧

2 {A[B/X]} → F→
3 {C}) → (F∧

2 {∀XA} → F→
3 {C}).

By mp and Lemmas 7.11 and 7.12 we have
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IKt2 ⊢ F→
1 {F∧

2 {A[B/X]} → F∧
3 {C}} → F→

1 {F∧
2 {∀XA} → F→

3 {C}}. ✓

Lemma 7.24 (Soundness of ∀r). If IKt2 ⊢ ifmu(R |Γ ⇒ v : A[P/X]) then IKt2 ⊢
ifmu(R |Γ ⇒ v : ∀XA).

Proof. We can write ifmu(R |Γ ⇒ v : A[P/X]) = F→{A[P/X]} while ifmu(R |Γ ⇒
v : ∀XA) = F→{∀XA} and P does not occur in F→{∀XA} by Lemma 7.9.

By gen, if IKt2 ⊢ F→{A[P/X]} then IKt2 ⊢ ∀XF→{A}
By Lemma 7.16 we have IKt2 ⊢ ∀XF→{A} → F→{∀XA}.
Hence by mp, if IKt2 ⊢ F→{A[P/X]} then IKt2 ⊢ F→{∀XA} ✓

Lemma 7.25 (Soundness of □l and ■l). If IKt2 ⊢ ifmu(R, vRw |Γ, w : A ⇒ x : C)
then IKt2 ⊢ ifmu(R, vRw |Γ, v : □A ⇒ x : C).

Proof. This requires a careful analysis of the polytree structure of R.

• If u
R
↭ v does not contain vRw and x ∈ Rw\v:

ifmu(R, vRw |Γ, w : A ⇒ x : C) = F→
1 {□((A ∧D) → F→

2 {C})}
ifmu(R, vRw |Γ, v : □A ⇒ x : C) = F→

1 {□A → □(D→ F→
2 {C})}

for some formula D and contexts F1, F2 by Lemmas 7.9 and 7.10.
Using propositional reasoning IKt2 ⊢ ((A ∧D)→ F→

2 {C})→A→ (D→
F→
2 {C}), apply nec□ and F□ to get IKt2 ⊢ □((A ∧D)→ F→

2 {C})→ □A→
□(D→ F→

2 {C})
We can apply Lemmas 7.11 and 7.12 to get IKt2 ⊢ F→

1 {□((A ∧ D) →
F→
2 {C})}→ F→

1 {□A→ □(D→ F→
2 {C})}

• If u
R
↭ v does not contain vRw and x ∈ Rv\w:

ifmu(R, vRw |Γ, w : A ⇒ x : C) = F→
1 {F∧

2 {^(A ∧D)} → F→
3 {C}}

ifmu(R, vRw |Γ, v : □A ⇒ x : C) = F→
1 {F∧

2 {□A ∧ ^D} → F→
3 {C}}

for some formula D and contexts F1, F2, F3 by Lemmas 7.9 and 7.10.
From Proposition 2.11 we have IKt2 ⊢ (□A ∧ ^D) → ^(A ∧D)
By Lemmas 7.11 and 7.13 and mp IKt2 ⊢ F∧

2 {□A ∧ ^D} → F∧
2 {^(A ∧

D)}.
We have the IPL ⊢ (A → B) → (B → C) → (A → C), thus we also

have IKt2 ⊢ (F∧
2 {□A ∧ ^D} → F∧

2 {^(A ∧ D)}) → (F∧
2 {^(A ∧ D)} →

F→
3 {C}) → (F∧

2 {□A ∧ ^D} → F→
3 {C}).

By Lemmas 7.11 and 7.12 andmp IKt2 ⊢ F→
1 {F∧

2 {^(A∧D)} → F→
3 {C}} →

F→
1 {F∧

2 {□A ∧ ^D} → F→
3 {C}}.

• If u
R
↭ v contains vRw and x ∈ Rw\v:

ifmu(R, vRw |Γ, w : A ⇒ x : C) = F→
1 {F∧

2 {A ∧ _D} → F→
3 {C}}

ifmu(R, vRw |Γ, v : □A ⇒ x : C) = F→
1 {F∧

2 {_(□A ∧ D)} → F→
3 {C}}

for some formula D and contexts F1, F2, F3 by Lemmas 7.9 and 7.10.
Propositional reasoning gives IKt2 ⊢ (□A ∧D)→D. Applying nec■ and

F_, we get IKt2 ⊢ _(□A ∧D)→ _D.
Similarly propositional reasoning gives IKt2 ⊢ (□A ∧ D)→ □A and ap-

plying nec■ and F_, we get IKt2 ⊢ _(□A ∧D)→ _□A.
Using the A_□ axiom _□A→A and →-transitivity, we get IKt2 ⊢ _(□A∧

D)→A.
Combining the two with propositional reasoning, we get IKt2 ⊢ _(□A ∧

D)→(A∧_D). By Lemmas 7.11 and 7.13 and mp we get IKt2 ⊢ F∧
2 {_(□A∧

D)}→ F∧
2 {A ∧ _D}.
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Propositional reasoning gives IKt2 ⊢ (F∧
2 {A∧_D} → F→

3 {C})→(F∧
2 {_(□A∧

D)} → F→
3 {C}). By Lemmas 7.11 and 7.12 and mp IKt2 ⊢ F→

1 {F∧
2 {A ∧

_D} → F→
3 {C}}→ F→

1 {F∧
2 {_(□A ∧D)} → F→

3 {C}}.
• If u

R
↭ v contains vRw and x ∈ Rv\w:

ifmu(R, vRw |Γ, w : A ⇒ x : C) = F→
1 {A→ ■(D→ F→

3 {C})} and
ifmu(R, vRw |Γ, v : □A ⇒ x : C) = F→

1 {■((□A ∧D)→ F→
3 {C})}

for some formula D and contexts F1, F3 by Lemmas 7.9 and 7.10.
First, using the A_□ axiom _□A→A and propositional reasoning, IKt2 ⊢

(A→■(D→F→
3 {C}))→(_□A→■(D→F→

3 {C})). Using Proposition 2.11,
IKt2 ⊢ (_□A→ ■(D → F→

3 {C}))→ ■(□A→D → F→
3 {C}). Propositional

reasoning, nec■ and F■ gives IKt2 ⊢ ■(□A→D→F→
3 {C})→■((□A∧D)→

F→
3 {C}).
Applying →-transitivity, we get IKt2 ⊢ (A→■(D→F→

3 {C}))→■((□A∧
D)→F→

3 {C}). By Lemmas 7.11 and 7.12 and mp, we get IKt2 ⊢ F→
1 {A→

■(D→ F→
3 {C})}→ F→

1 {■((□A ∧D)→ F→
3 {C})}. ✓

Lemma 7.26 (Soundness of □r and ■r). If IKt2 ⊢ ifmu(R, vRw |Γ ⇒ w : A) then
IKt2 ⊢ ifmu(R |Γ ⇒ v : □A).

Proof. Both the premiss and the conclusion will be written as the same formula
interpretation F→{□A}. Note that there cannot be further formulas inside the □
as the label in the premiss was fresh. Thus, the rule can be derived trivially. ✓

Remark 7.27. Note that in almost all rules, we were able to derive a formula which
is directly in correspondence to the rule which we were translating. This is for all
rules, except for ∀r which is directly corresponding to the rule of generalisation. In
contrast, the cut-rule can also be derived as a single rule, as the next lemma shows.

Lemma 7.28. If IKt2 ⊢ ifmu(R |Γ ⇒ v : A) and IKt2 ⊢ ifmu(R |Γ, v : B ⇒ w :
C), then IKt2 ⊢ ifmu(R |Γ, v : A → B ⇒ w : C)

Proof. We can write ifmu(R |Γ ⇒ v : A) = F→
1 {F∧

3 {⊤} → F→
2 {A}} and ifmu(R |Γ′, v :

B ⇒ w : C) = F→
1 {F∧

2 {B} → F→
3 {C}} and ifmu(R |Γ,Γ′, v : A → B ⇒ w : C) =

F→
1 {F∧

2 {A → B} → F→
3 {C}} by Lemma 7.10.

Note that IPL ⊢ (A → B → C) → ((D → E) → E) → (D → B) →
(C → E) → (A → E) and therefore by substitution also IKt2 ⊢ (F∧

2 {A →
B} → F→

2 {A} → F∧
2 {B})) → ((F∧

3 {⊤} → F→
3 {C}) → F→

3 {C}) → (F∧
3 {⊤} →

F→
2 {A}) → (F∧

2 {B} → F→
3 {C}) → (F∧

2 {A → B} → F→
3 {C}).

By Lemmas 7.14 and 7.15 and mp IKt2 ⊢ (F∧
3 {⊤} → F→

2 {A}) → (F∧
2 {B} →

F→
3 {C}) → (F∧

2 {A → B} → F→
3 {C}).

By Lemmas 7.11 and 7.12 and mp, we also get IKt2 ⊢ F→
1 {F∧

3 {⊤} → F→
2 {A}} →

F→
1 {F∧

2 {B} → F→
3 {C}} → F→

1 {F∧
2 {A → B} → F→

3 {C}}. ✓

Corollary 7.29 (Soundness of →l). If IKt2 ⊢ ifmu(R |Γ ⇒ v : A) and IKt2 ⊢
ifmu(R |Γ′, v : B ⇒ w : C), then IKt2 ⊢ ifmu(R |Γ,Γ′, v : A → B ⇒ w : C)

Proof. We use the fact that we can always derive from the formula interpreta-
tion of R |Γ ⇒ w : C the formula interpretation of R |Γ,Γ′ ⇒ w : C by apply-
ing Lemma 7.20 multiple times for w. ✓

Lemma 7.30. If IKt2 ⊢ ifmu(R |Γ ⇒ v : A) and IKt2 ⊢ ifmu(R |Γ, v : A ⇒ w :
C), then IKt2 ⊢ ifmu(R |Γ ⇒ w : C)
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Proof. We can write ifmu(R |Γ ⇒ v : A) = F→
1 {F∧

3 {⊤} → F→
2 {A}} and ifmu(R |Γ, v :

A ⇒ w : C) = F→
1 {F∧

2 {A} → F→
3 {C}} and ifmu(R |Γ ⇒ w : C) = F→

1 {F∧
2 {→

}F→
3 {C}} by Lemma 7.10.
We use the fact that IPL ⊢ (A → B → C) → ((D → E) → E) → (D →

B) → (C → E) → (A → E) and substitute to get IKt2 ⊢ (F∧
2 {⊤} → F→

2 {A} →
F∧
2 {A}) → ((F∧

3 {⊤} → F→
3 {C}) → F→

3 {C}) → (F∧
3 {⊤} → F→

2 {A}) → (F∧
2 {A} →

F→
3 {C}) → (F∧

2 {→}F→
3 {C}).

By Lemma 7.14 we get F∧
2 {⊤} → F→

2 {A} → F∧
2 {A}).

By Lemma 7.15 we get (F∧
3 {⊤} → F→

3 {C}) → F→
3 {C}

and apply mp to get IKt2 ⊢ (F∧
3 {⊤} → F→

2 {A}) → (F∧
2 {A} → F→

3 {C}) →
(F∧

2 {→}F→
3 {C})

Using Lemmas 7.11 and 7.12 with mp, we can derive IKt2 ⊢ F→
1 {F∧

3 {⊤} →
F→
2 {A}} → F→

1 {F∧
2 {A} → F→

3 {C}} → F→
1 {F∧

2 {→}F→
3 {C}} ✓

Corollary 7.31 (Soundness of cut). If IKt2 ⊢ ifmu(R |Γ ⇒ v : A) and IKt2 ⊢
ifmu(R |Γ′, v : A ⇒ w : C), then IKt2 ⊢ ifmu(R |Γ,Γ′ ⇒ w : C)

Proof. We use the fact that we can always derive from the formula interpreta-
tion of R |Γ ⇒ w : C the formula interpretation of R |Γ,Γ′ ⇒ w : C by apply-
ing Lemma 7.20 multiple times for w. ✓

Proof of Lemma 7.17. We proceed by induction on the proof of S.
If S is obtained by an application of id, apply Lemma 7.19 to obtain an axiomatic

proof of ifmu(S) with u ranging over the labels occurring in S.
Let the last rule in the proof of S be a single-premiss rule with premiss S1. By the

inductive hypothesis, we obtain axiomatic proofs of ifmu(S1) with u ranging over
the labels occurring in S1. Note that all labels occurring in S1 are also occurring
in S. Applying the lemmas above appropriately, we obtain IKt2 proofs of ifmu(S)
with u ranging over labels occurring in S.

Let the last rule in the proof of S be a dual-premiss rule with premisses S1 and
S2. By the inductive hypothesis, we have proofs of ifmu(S1) and ifmu(S2) where
u ranges over the labels occurring in S. By applying the appropriate lemma, we
obtain axiomatic proofs proofs of ifmu(S) (u ranges over labels in S). ✓

7.5. Axiomatic soundness for ℓKt2. We recover Theorem 7.1(2) for the classical
system as a corollary of the intuitionistic one, again strengthening the statement
first:

Lemma 7.32 (Soundness of interpretation). If ℓKt2 ⊢ R |Γ ⇒ ∆ then Kt2 ⊢
cfmu(R |Γ ⇒ ∆) for any label u occurring in R, Γ or ∆.

This result is factored through an alternate system for Kt2, namely ℓIKt2 with
a rule for double negation elimination:

R |Γ ⇒ v : ¬¬A
(¬¬)

R |Γ ⇒ v : A

The soundness of that additional rule (¬¬) is directly obtained from the defini-
tion of Kt2, which includes the axiom ¬¬A → A.

Lemma 7.33. If ℓKt2 ⊢ R |Γ ⇒ ∆, then ℓIKt2 + (¬¬) ⊢ R |Γ,¬∆13 ⇒ x : ⊥ for
any label x occurring in R, Γ or ∆.

13If ∆ = v1 : A1, . . . , vn : An then ¬∆ = v1 : ¬A1, . . . , vn : ¬An.
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Proof. By Lemma 4.3, ℓIKt2 ⊢ R |Γ, v : ⊥ ⇒ w : A whenever v and w are connected
in R.

• id
R | v : A ⇒ v : A

id
R | v : A ⇒ v : A

Lemma 4.3

R | v : ⊥ ⇒ x : ⊥
→l

R | v : A, v : ¬A ⇒ x : ⊥

•
R |Γ ⇒ ∆, v : A R |Γ′, v : B ⇒ ∆′

→l

R |Γ,Γ′, v : A → B ⇒ ∆,∆′ (and similarly for cut)

By inductive hypothesis, ℓIKt2 + (¬¬) ⊢ R |Γ,¬∆, v : ¬A ⇒ v : ⊥ and
ℓIKt2 + (¬¬) ⊢ R |Γ′, v : B,¬∆′ ⇒ x : ⊥.

R |Γ,¬∆, v : ¬A ⇒ v : ⊥
→r

R |Γ,¬∆ ⇒ v : ¬¬A
(¬¬)

R |Γ,¬∆ ⇒ v : A R |Γ′, v : B,¬∆′ ⇒ x : ⊥
→l

R |Γ,Γ′, v : A→B,¬∆,¬∆′ ⇒ x : ⊥

•
R |Γ, v : A ⇒ ∆, v : B

→r

R |Γ ⇒ ∆, v : A → B
By inductive hypothesis, ℓIKt2+(¬¬) ⊢ R |Γ, v : A,¬∆, v : ¬B ⇒ v : ⊥.

R |Γ, v : A,¬∆, v : ¬B ⇒ v : ⊥
→r

R |Γ, v : A,¬∆ ⇒ v : ¬¬B
(¬¬)

R |Γ, v : A,¬∆ ⇒ v : B
→r

R |Γ,¬∆ ⇒ v : A → B

Lemma 4.3

R |Γ,¬∆, v : ⊥ ⇒ x : ⊥
→l

R |Γ,¬∆, v : ¬(A → B) ⇒ x : ⊥

• Non-branching left rules:
R, |Γ, v′ : A′ ⇒ ∆

R |Γ, v : A ⇒ ∆
By inductive hypothesis, ℓIKt2 + (¬¬) ⊢ R |Γ, v′ : A′,¬∆ ⇒ x : ⊥.
It is enough to apply the same rule in ℓIKt2:

R |Γ, v′ : A′,¬∆ ⇒ x : ⊥
R |Γ, v : A,¬∆ ⇒ x : ⊥

•
R, vRw |Γ ⇒ ∆, w : A

□r w fresh
R |Γ ⇒ ∆, v : □A

(and similarly for ■l and ∀l)

By inductive hypothesis, ℓIKt2+(¬¬) ⊢ R, vRw |Γ,¬∆, w : ¬A ⇒ w : ⊥.

R, vRw |Γ,¬∆, w : ¬A ⇒ w : ⊥
→r

R, vRw |Γ,¬∆ ⇒ w : ¬¬A
(¬¬)

R, vRw |Γ,¬∆ ⇒ w : A
□r

R |Γ,¬∆ ⇒ v : □A

Lemma 4.3

R |Γ,¬∆, v : ⊥ ⇒ x : ⊥
→l

R |Γ,¬∆, v : ¬□A ⇒ x : ⊥

✓

Proof of Lemma 7.32. By Lemma 7.33, since ℓKt2 ⊢ R |Γ ⇒ ∆, also ℓIKt2+(¬¬) ⊢
R |Γ,¬∆ ⇒ x : ⊥.
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We already established the local soundness of ℓIKt2 rules in the previous section.

It remains to show the local soundness of
R |Γ ⇒ w : ¬¬A

(¬¬)
R |Γ ⇒ w : A

Assume Kt2 ⊢ cfmu(R |Γ ⇒ w : ¬¬A) = lfmu(R |Γ) → rfmu(R |w : ¬¬A), we
need to show that Kt2 ⊢ cfmu(R |Γ ⇒ w : A) = lfmu(R |Γ) → rfmu(R |w : A)

By induction on the path u
R
↭ v, let us show that Kt2 ⊢ rfmu(R |w : ¬¬A) →

rfmu(R |w : A)

• if u = v: immediate as Kt2 ⊢ ¬¬A → A.

• if there is v such that uRv ∈ R and v
R
↭ w: By inductive hypothesis,

Kt2 ⊢ rfmv(R |w : ¬¬A)→ rfmv(R |w : A). Hence, by nec□, D□ and mp,
Kt2 ⊢ □rfmv(R |w : ¬¬A)→ □rfmv(R |w : A)

• if there is v such that vRu ∈ R and v
R
↭ w: Similarly replacing □ by ■.

From this, we conclude that

Kt2 ⊢cfmu(R |Γ,¬∆ ⇒ u : ⊥)

=lfmu(R |Γ,¬∆) → rfmu(R |u : ⊥)

=(lfmu(R |Γ) ∧ lfmu(R | ¬∆)) → ⊥
↔lfmu(R |Γ)→ lfmu(R | ¬∆) → ⊥
=lfmu(R |Γ)→ rfmu(R |∆)

As from the definition of lfm() and rfm(), ¬lfmu(R | ¬∆) = rfmu(R |∆). ✓

8. Perspectives

We have now completed the argument justifying our Main Theorems 3.3, 3.14
and 4.2: they are obtained by the results we have presented according to the dia-
grams in Fig. 1a, in the classical setting, and Fig. 1b, in the intuitionistic setting.
Let us take a moment to reflect on (i) the relationship between the classical and
intuitionistic theories we presented; and (ii) some interesting subsystems of second-
order (intuitionistic) tense logic.

8.1. Relating classical and intuitionistic: negative translations. We have
presented both classical and intuitionistic versions of second-order tense logic, so
it would be natural to probe their relationship according to known techniques. In
particular, classical logic is interpreted by intuitionistic logic by the negative (or
double negation) translations. Since our language is formulated in the negative
fragment, the Gödel-Gentzen translation is particularly easy to define, commuting
with all but atomic formulas.14 Let us develop this here. Recall that we write
⊥ := ∀XX and ¬A := A → ⊥.

Definition 8.1 ((Second-order modal) negative translation). For each formula A
define its negative translation AN by:

PN := ¬¬P
XN := ¬¬X

(A → B)N := AN → BN

(□A)N := □AN

■A)N := ■AN

(∀XA)N := ∀XAN

14Note that we could have adapted other negative translations, such as Kolmogorov or Kuroda,
but such a development is beyond the scope of this work. As in predicate logic, we suspect that

all these translations would be equivalent over IKt2.
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The main point of this subsection is to show the soundness of the ·N translation,
i.e. that it indeed embeds classical second-order tense logic into intuitionistic:

Theorem 8.2. Kt2 ⊢ A =⇒ IKt2 ⊢ AN .

Before we prove this we first need some (expected) auxiliary results:

Lemma 8.3 (Negativity). IKt2 proves the following:

¬¬¬A → ¬A
¬¬(A → B) → ¬¬A → ¬¬B

¬¬∀XA → ∀X¬¬A

¬¬□A → □¬¬A
¬¬■A → ■¬¬A

Proof. The left three items are well known (see, e.g., [TS00, Sections 2.3 & 11.5.9].
Proofs of □, i.e. ¬¬□A → □¬¬A in IK were given in [DM22a] and [DM23, Lemma 10],
whence we obtain the same here since IKt2 contains IK, under the impredicative
encodings of positive connectives, cf. Section 2.3. For self-containment let us repeat
that proof here:

A → ¬¬A by IPL reasoning
□A → □¬¬A by nec□ and D□
□A → ^¬A → ^⊥ by definition of ¬ and D^
□A → ^¬A → ⊥ by N^⊥
¬¬□A → ^¬A → ⊥ by IPL reasoning
¬¬□A → ^¬A → □⊥ by definition of ⊥ and C
¬¬□A → □(¬A → ⊥) by I^□
¬¬□A → □¬¬A by definition of ¬

References to N^⊥ and I^□ are from Eq. (4), and were derived previously in Sec-
tion 2.3. The black version, ¬¬■A → ■¬¬A now just follows by symmetry. ✓

Proposition 8.4. IKt2 ⊢ ¬¬AN ↔ AN and IKt2 ⊢ ⊥ ↔ ⊥N .

Proof sketch. AN → ¬¬AN is already a consequence of IPL. For the converse
direction, ¬¬AN → AN , we proceed by induction on the structure of A, using the
previous Negativity Lemma 8.3 at each step.

⊥ → ⊥N is an instance of comprehension C, as ⊥ = ∀XX. For the converse
direction, ⊥N → ⊥, note that ⊥N = ∀X¬¬X. By comprehension axiom C, we thus
have ⊥N → ¬¬⊥, whence indeed ⊥N → ⊥ by IPL reasoning. ✓

Now the soundness of the negative translation is readily established:

Proof of Theorem 8.2. By induction on on a Kt2 proof of A:

• The ·N -translation of every axiom of IKt2 is again an axiom instance of
IKt2. For the remaining axiom of Kt2, namely ¬¬A → A, note that
(¬¬A → A)N = ((AN → ⊥N ) → ⊥N ) → AN , which is provable in IKt2 by
Proposition 8.4.

• The ·N -translation of both inference rules of Kt2 are again instances of
inference rules of IKt2. ✓

8.2. Specialising to sublogics. Second-order (intuitionstic) tense logic has sev-
eral sublogics of interest. As one would expect, the results of this paper allow us to
inherit some analogous results for certain sublogics. In particular by specialising
the grand tours of Figs. 1a and 1b to the modality-free fragment of our syntax we
inherit a proof theoretic account, namely cut-admissibility, of:
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• Classical second-order propositional logic. ℓKt2 now specialises to the usual
sequent calculus for second-order propositional logic (see, e.g., [Gir87, Sec-
tion 3.A.1], [RS24, Section 5.1] or [Tak87, Definition 15.3]). Let us point
that this is somewhat a toy result, as it is known that even Boolean com-
prehension, setting C = ⊥ or C = ⊤ in C, suffices in proof search, due to
the Boolean valued semantics.

• Intuitionistic second-order propositional logic. ℓIKt2 now specialises to the
usual second-order sequent calculus for intuitionistic propositional logic (i.e.
the classical calculus with singleton RHS constraint). Cut-admissibility for
the multi succedent variant (i.e. the modality-free fragment of mℓIKt2) was
obtained by Prawitz in [Pra70], as well as its completeness over Beth models
using similar techniques. Thanks to our negative formula syntax we gain
completeness over Kripke models (i.e. predicate models where W = ∅) and
cut-admissibility for the usual single-succedent calculus, cf. Proposition 4.5.

It is natural to wonder whether the results of this work similarly give rise to a
treatment of second-order (intiuitionistic)modal logic, without the black modalities.
Logics based on this syntax have been much more significantly explored in the
literature [Fin70, Bul69, Kap70, TC06, KT96, BHK18, BBK23]. However, the
fact that our ^ is defined not only in terms of □ and ∀ but also ■ complicates the
situation. One could envisage restricting our labelled system to black-free formulas,
but our axiomatic translation in Section 7 introduces ^s, and hence ■s. In fact
adding a native ^ to evade this issue, along with whatever modal reasoning is used
in Section 7, still does not necessarily yield cut-admissibility, for a somewhat subtle
reason: cut-free labelled proofs of ■-free formulas may still require formulas with
■, due to the comprehension steps involved (i.e. ∀l). This exemplifies the non-
analyticity of second-order logic. For example, here is a cut-free ℓIKt2 proof of an
instance of the negativity of □ and ⊥, cf. Lemma 8.3:

id
vRw | v : P ⇒ v : P

■l
vRw |w : ■P ⇒ v : P

∀l

vRw |w : ∀XX ⇒ v : P
□l

vRw | v : □⊥ ⇒ v : P
∀r

vRw | v : □⊥ ⇒ v : ∀XX
→r

vRw | · ⇒ v : ¬□⊥

id
vRw |w : ⊥ ⇒ w : ⊥

□l
vRw | v : □⊥ ⇒ w : ⊥

∀l

vRw | v : ∀XX ⇒ w : ⊥
→l

vRw | v : ¬¬□⊥ ⇒ w : ⊥
□r

· | v : ¬¬□⊥ ⇒ v : □⊥

This is a cut-free proof of a ■-free theorem (in particular without ^s, native or
otherwise), that nonetheless uses ■. How should one prove this theorem intuition-
istically without using ■?

Notice that the same issue does not present classically, as the theorem is an
instance of the double negation-elimination axiom. We suspect that the same proof
search argument as in Section 5 should go through in the ■-free fragment, classically.
Inspecting again the axiomatic translation of Section 7 with a classical sensitivity,
notice that the formula translation of a ■-free sequent remains ■-free, as long
as we interpret ^A := ¬□¬A. Axiomatically, apart from second-order classical



SECOND-ORDER (INUITIONISTIC) TENSE LOGIC 47

propositional logic CPL2 := IPL2+¬¬A → A, the white modal axioms from Item 2,
we also required B : ∀X□A → □∀XA (cf. Example 2.10). Let us point out that
the resulting axiomatisation, CPL2 + D□ + D^ + nec□ + B, almost matches the
proposal of second-order (classical) modal logic in [BHK18], but for the fact that
they admit only quantifier-free comprehension. It would be interesting to develop
more formally our arguments for the modal-only setting (without black modalities),
and compare the resulting logic(s) with that of [BHK18].

9. Conclusions

In this work we developed the axiomatics, semantics and proof theory of a second-
order extension of tense logic, over both classical and intuitionistic bases. We ulti-
mately showed that several natural definitions of the intuitionistic or classical theory
respectively coincide, showcasing the robustness of each logic. Along the way we
established fundamental metalogical results, namely soundness and completeness of
axiomatisations with respect to certain (bi)relational semantics, and proof theoretic
results, namely cut-admissibility for associated calculi based on labelled sequents.
We employed a proof search based approach to both of these results, establishing
both simultaneously by way of our ‘grand tours’ in Figs. 1a and 1b. We conclude
this work by discussing some further interesting directions of research.

Second-order logic has the capacity to define least and greatest fixed points of
positive formulas, by encoding Knaster-Tarski style definitions (see, e.g., [BFPS81,
Chapter 1] or, at a higher level, [RS24, Section 5.3]). In second-order logic with
modalities we can do the same if we include a global modality, say ⊠, where ⊠A
should be read as “everywhereA”. In particular, the least fixed point of the operator
X 7→ A(X), where X appears only positively in A(X), is given by:

µXA(X) := ∀X(⊠(A(X) → X) → X)

This encoding already appears in [Sti96, Section 5], where it is observed that a
second-order modal syntax can express all of the modal µ-calculus [Koz82]. It
would be interesting to investigate the extension of our logics by a global modality
according to the axiomatic, semantic and proof theoretic disciplines herein. In the
presence of tense modalities such an extension would subsume the two-way modal
µ-calculus [Var98]. Note that this logic has recently received a proof theoretic
treatment via cyclic proofs [AEL+25].

Finally it would be natural to recast second-order intuitionistic tense logic from
a proofs-as-programs viewpoint, à la Curry-Howard (see, e.g., [SU06]). The logic
CK, a sublogic of IK, and some extensions have already been studied from a proofs-
as-programs perspective and translated into modal lambda calculi [BPR01, DP01]
(see [Kav16] for a survey). Modal type theory has independently emerged as a way
to encapsulate computations with effects [Mog89], receiving categorical foundations
in [GCK+22, Shu23], and has been implemented in mainstream programming lan-
guages [TWD+25, LWD+24]. Recently adjoint modalities _ and □ have also been
crucial in a proposal of Kavvos, linking relational semantics to the type theoretic
approach for modal logic [Kav24]. To this end it would be interesting to develop
a natural deduction formulation of IKt2, with corresponding term annotation, and
prove its strong normalisation. Naturally the method of reducibility candidates, due
to Girard [Gir72], should be applicable. At the same time such an endeavour would
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further bolster the proof theoretic underpinnings of second-order (intuitionistic)
tense logic.
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[Gir87] Jean-Yves Girard. Proof Theory and Logical Complexity, volume 1 of Studies in Proof
Theory. Bibliopolis, Naples, 1987. Distributed by Humanities Press, Atlantic High-

lands, N.J.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, Cam-

bridge, UK, 1989.

[GNO21] Marianna Girlando, Sara Negri, and Nicola Olivetti. Uniform labelled calculi for pref-
erential conditional logics based on neighbourhood semantics. Journal of Logic and

Computation, 31(3):947–997, 2021.

[GPT11] Rajeev Goré, Linda Postniece, and Alwen F Tiu. On the correspondence between
display postulates and deep inference in nested sequent calculi for tense logics. Logical

Methods in Computer Science, 7, 2011.
[Gre99] Carsten Grefe. Fischer Servi’s intuitionistic modal logic and its extensions. PhD the-

sis, Freie Universität Berlin, 1999.

[GSC25] Jim de Groot, Ian Shillito, and Ranald Clouston. Semantical analysis of intuitionistic
modal logics between CK and IK. In 2025 40th Annual ACM/IEEE Symposium on

Logic in Computer Science (LICS), pages 169–182. IEEE, 2025.

[Hen50] Leon Henkin. Completeness in the theory of types. The Journal of Symbolic Logic,
15(2):81–91, 1950.

[Kap70] David Kaplan. S5 with quantifiable propositional variables. Journal of Symbolic Logic,

35(2):355, 1970.
[Kav16] G Alex Kavvos. The many worlds of modal {\lambda}-calculi: I. curry-howard for

necessity, possibility and time. arXiv preprint arXiv:1605.08106, 2016.

[Kav24] G. Alexandros Kavvos. Two-dimensional kripke semantics I: presheaves. In Jakob
Rehof, editor, 9th International Conference on Formal Structures for Computation

and Deduction, volume 299 of LIPIcs, pages 14:1–14:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024.

[Koz82] Dexter Kozen. Results on the propositional µ-calculus. In Mogens Nielsen and

Erik Meineche Schmidt, editors, Automata, Languages and Programming, pages 348–
359, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[KS19] Roman Kuznets and Lutz Straßburger. Maehara-style modal nested calculi. Archive
for Mathematical Logic, 58(3):359–385, 2019.

[KT96] Michael Kaminski and Michael Tiomkin. The expressive power of second-order propo-

sitional modal logic. Notre Dame Journal of Formal Logic, 37(1):35–43, 1996.

[LWD+24] Anton Lorenzen, Leo White, Stephen Dolan, Richard A Eisenberg, and Sam Lind-
ley. Oxidizing ocaml with modal memory management. Proceedings of the ACM on

Programming Languages, 8(ICFP):485–514, 2024.
[Lyo25] Tim S. Lyon. Nested sequents for intuitionistic grammar logics via structural refine-

ment, 2025.

[LZQ22] Zhen Lin, Qing-Zhe Zha, and Ji-Hong Qian. A proof-theoretic approach to negative

translations in intuitionistic tense logics. Studia Logica, 110(5):1067–1093, 2022.



50 SECOND-ORDER (INUITIONISTIC) TENSE LOGIC
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1984.
[Shu23] Michael Shulman. Semantics of multimodal adjoint type theory. Electronic Notes in

Theoretical Informatics and Computer Science, 3, 2023.

[Sim94] Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic.

PhD thesis, University of Edinburgh, July 1994.
[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic.

Cambridge University Press, second edition, 2009.
[Sti96] Colin Stirling. Games and modal mu-calculus. In Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS 1996), volume 1055 of Lecture Notes in

Computer Science, pages 298–312. Springer, 1996.



SECOND-ORDER (INUITIONISTIC) TENSE LOGIC 51

[Str13] Lutz Straßburger. Cut elimination in nested sequents for intuitionistic modal logics.

In International conference on foundations of software science and computational

structures, pages 209–224. Springer, 2013.
[SU06] Morten H. Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomor-

phism, volume 149. Elsevier, 2006.

[Tai66] William W. Tait. A nonconstructive proof of Gentzen’s Hauptsatz for second order
predicate logic. Bulletin of the American Mathematical Society, 72(6):980–983, 1966.

[Tak67] Moto-o Takahashi. A proof of cut-elimination in simple type theory. Journal of the

Mathematical Society of Japan, 19(4):399–410, 1967.
[Tak87] Gaisi Takeuti. Proof Theory, volume 81 of Studies in Logic and the Foundations of

Mathematics. North-Holland, Amsterdam, 2nd edition, 1987.

[TC06] Balder Ten Cate. Expressivity of second order propositional modal logic. Journal of
Philosophical Logic, 35(2):209–223, 2006.

[TS00] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Number 43 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,

Cambridge, 2nd edition, 2000.

[TWD+25] Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and
Anton Lorenzen. Modal effect types. Proceedings of the ACM on Programming Lan-

guages, 9(OOPSLA1):1130–1157, 2025.

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way automata. In Automata,
Languages and Programming, 25th International Colloquium, ICALP’98, Aalborg,

Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer

Science, pages 628–641. Springer, 1998.
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