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The modal logic of transitive frames (such that, if xRy and yRz, then xRz) is known
to be K4, given by extending normal modal logic K with the axiom 4 : 33a→ 3a.
This correspondence can be generalised to quasi-transitivity (namely, if xiRxi+1 for
i ≤ n− 1, then x0Rxn) by extending K with the axiom 4n : 3na→3a for n ≥ 3.

This axiom is a specific case of modal reduction axioms 3na→ 3ka [1] as well as
path axioms 3na→ 2l3a [4] or more generally of the Geach/Scott-Lemmon axioms
3n2ma→ 2l3ka [5]. Several proof-theoretical treatments of these families of axioms
have been considered, via labelled [8], nested [4] or indexed nested [7] sequents, to only
cite a few examples, as well as comparison of these different approaches [3].

Here, we focus on the restricted family of quasi-transitive modal logics in the setting
of nested sequents [2, 9]. Starting from nested sequent system nK, composed of rules
id, ∧, ∨, 2 and 3k, the transitive modal logic K4 is sound complete with respect to
nK+34 (see Fig. 1). This can be proved, following [2], via a cut-elimination argument:

A is a theorem of K + 4 ⇐⇒ A is provable in nK + 34 + cut

⇐⇒ A is provable in nK + 34
(1)

The cut-elimination result itself is a bit involved as it requires the introduction of a
complex generalisation of the cut rule, called a 4cut.

On the other hand, [4] proves a soundness and completeness results in the general
case of sets of path axioms, but by an external proof. If we specialise their result to
any set of (quasi-)transitivity axioms X ⊆ {4n | n ≥ 2}, it can be stated as:

A is a theorem of K + X ⇐⇒ A is provable in nK + {3kn | n ∈ compX} (Fig. 1) (2)

This specialisation to quasi-transitivity also allows us to simplify their notion of comple-
tion, namely, if we write setX for the set {n ∈ N | 4n ∈ X}, the set compX can be defined
inductively as follows: comp0 := setX; compp+1 := compp ∪ {i + j − 1 | i, j ∈ compp};
and finally compX :=

⋃∞
p=0 compp

We generalise (1) and provide a new proof of (2) which goes via an internal cut-
elimination and interestingly lets us pinpoint precisely where the need for completion
arises (see 2 ⇒ 3 in Thm. 1). We also provide an alternative nested sequent system
to [4] which is in particular modular, that is, made of rules directly corresponding to
each quasi-transitive axiom which can freely mix without requiring further rules unlike
with completion (see 3 ⇒ 4 in Thm. 1).

Theorem 1. The following are equivalent:

1. A is a theorem of K + X;
2. A is provable in nK + 3kX + cut where 3kX := {3kn | n ∈ setX};
3. A is provable in nK + 3kX̂ where 3kX̂ := {3kn | n ∈ compX};
4. A is provable in nK + 34X where 34X := {34(n−1) | n ∈ setX}.

We give a sketch of the proof, full details can be found in [6]. For the direction 1⇒ 2,
knowing that the axioms and rules of K are derivable using nK + cut, we only need to
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id
Γ{a, ā}

Γ{A} Γ{B}
∧

Γ{A ∧B}
Γ{A,B}

∨
Γ{A ∨B}

Γ
{[
A
]}

2
Γ{2A}

Γ{A} Γ
{
Ā
}

cut
Γ{∅}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modal propagation rules

Γ
{
3A,

[
A,∆

]}
3k

Γ
{
3A,

[
∆
]} Γ

{
3A,

[
∆1,

[
. . .

[
∆n, A

]
. . .

]]}
3kn n ≥ 1

Γ
{
3A,

[
∆1,

[
. . .

[
∆n

]
. . .

]]}

Γ
{
3A,

[
3A,∆

]}
34

Γ
{
3A,

[
∆
]} Γ

{
3A,

[
∆1,

[
. . .

[
∆n,3A

]
. . .

]]}
34n n ≥ 1

Γ
{
3A,

[
∆1,

[
. . .

[
∆n

]
. . .

]]}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modal structural rules

Γ
{[

Σ
]
,
[
∆
]}

⊠k
Γ
{[

∆,Σ
]} Γ

{[
Σ
]
,
[
∆1,

[
. . . ,

[
∆n

]
. . .

]]}
⊠kn n ≥ 1

Γ
{[

∆1,
[
. . . ,

[
∆n,Σ

]
. . .

]]}

Figure 1. Nested sequent rules

show that for any n ≥ 2, axiom 4n is derivable using the rule 3kn.

id [
. . .

[
ā, a

]
. . .

]
,3a

3kn [
. . .

[
ā
]
. . .

]
,3a

2 n times
2nā,3a

∨
2nā ∨3a

...............................
4n : 3na→3a

The direction 2 ⇒ 3 is a cut-elimination theorem. By using the rules 3kn designed
by [4], rather than the generalisation 34n of the rule from [2], the cut-reduction case for
the (quasi-)transitivity rules becomes simpler, without the need for a 4cut-style rule.

Γ
{[
A
]
,
[
∆1,

[
. . . ,

[
∆n

]
. . .

]]}
2

Γ
{
2A,

[
∆1,

[
. . . ,

[
∆n

]
. . .

]]} Γ
{
3Ā,

[
∆1,

[
. . .

[
∆n, Ā

]
. . .

]]}
3kn

Γ
{
3Ā,

[
∆1,

[
. . .

[
∆n

]
. . .

]]}
cut

Γ
{[

∆1,
[
. . .

[
∆n

]
. . .

]]}

;

Γ
{[
A
]
,
[
∆1,

[
. . . ,

[
∆n

]
. . .

]]}
⊠kn .................................................................

Γ
{[

∆1,
[
. . . ,

[
∆n, A

]
. . .

]]}
Γ
{[

∆1,
[
. . .

[
∆n, Ā

]
. . .

]]}
cut

Γ
{[

∆1,
[
. . .

[
∆n

]
. . .

]]}

For the left premiss, we need to show that for any n ∈ setX the structural rule ⊠kn is
admissible in nK + 3kX̂. The right premiss is obtained by induction on proof height.

For direction 3⇒ 4, we need to show that for n ∈ compX, the rules 3kn and 34(n−1)

are derivable in nK + 34X by induction on the definition of compX. As a matter of
example, if n ∈ compp+1 and n = i + j − 1 for some i, j ∈ compp, by induction
hypothesis, 34(i−1) and 3kj are derivable, hence 3kn can be shown derivable as follows:

Γ
{
3A,

[
∆1,

[
. . .

[
∆i+j−1, A

]
. . .

]]}
3kj

Γ
{
3A,

[
∆1,

[
. . .

[
∆i−1,3A,

[
. . .

[
∆i+j−1

]
. . .

]]
. . .

]]}
34(i−1)

Γ
{
3A,

[
∆1,

[
. . .

[
∆i+j−1

]
. . .

]]}

Finally, the direction 4⇒ 1 is simply stating the soundness of rules in nK + 34X.
We conjecture the approach used here of propagating formulas 3A to ease the re-

quirement of completion given in [4] could be generalised to general path axioms.
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