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The modal logic of transitive frames (such that, if xRy and yRz, then zRz) is known
to be K4, given by extending normal modal logic K with the axiom 4 : ¢Oa — <a.
This correspondence can be generalised to quasi-transitivity (namely, if x; Rxi+1 for
i <n —1, then zoRx,) by extending K with the axiom 4" : O"a — $a for n > 3.

This axiom is a specific case of modal reduction axioms O"a — O*a [1] as well as
path axioms O"a — O'Ca [4] or more generally of the Geach/Scott-Lemmon axioms
onO™g — O'OFa [5]. Several proof-theoretical treatments of these families of axioms
have been considered, via labelled [8], nested [4] or indexed nested [7] sequents, to only
cite a few examples, as well as comparison of these different approaches [3].

Here, we focus on the restricted family of quasi-transitive modal logics in the setting
of nested sequents [2, 9]. Starting from nested sequent system nK, composed of rules
id, A, Vv, O and <y, the transitive modal logic K4 is sound complete with respect to
nK+ <4 (see Fig. 1). This can be proved, following [2], via a cut-elimination argument:

A is a theorem of K4+ 4 <= A is provable in nK + &4 + cut
<= A is provable in nK + &4

(1)
The cut-elimination result itself is a bit involved as it requires the introduction of a
complex generalisation of the cut rule, called a 4cut.

On the other hand, [4] proves a soundness and completeness results in the general
case of sets of path axioms, but by an external proof. If we specialise their result to
any set of (quasi-)transitivity axioms X C {4" | n > 2}, it can be stated as:

A is a theorem of K+ X <= A is provable in nK + {Ok, | n € compy} (Fig. 1) (2)

This specialisation to quasi-transitivity also allows us to simplify their notion of comple-
tion, namely, if we write setx for the set {n € N | 4" € X}, the set compy can be defined
inductively as follows: comp,, := setx; comp,,,; := comp, U {i +j — 1] 4,j € comp,};
and finally compy := U;":O comp,

We generalise (1) and provide a new proof of (2) which goes via an internal cut-
elimination and interestingly lets us pinpoint precisely where the need for completion
arises (see 2 = 3 in Thm. 1). We also provide an alternative nested sequent system
to [4] which is in particular modular, that is, made of rules directly corresponding to
each quasi-transitive axiom which can freely mix without requiring further rules unlike
with completion (see 3 => 4 in Thm. 1).

THEOREM 1. The following are equivalent:

A is a theorem of K+ X;

A is provable in nK + Ox + cut where Oxx = {Own | 1 € setx};
A is provable in nK 4+ O, g where O g i= {On | n € compy};

A is provable in nK + Oax where Oax := {Ouan_y) |1 € setx }.

We give a sketch of the proof, full details can be found in [6]. For the direction 1 = 2,
knowing that the axioms and rules of K are derivable using nK + cut, we only need to
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FicURE 1. Nested sequent rules

show that for any n > 2, axiom 4" is derivable using the rule <p.
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The direction 2 = 3 is a cut-elimination theorem. By using the rules <k, designed
by [4], rather than the generalisation s, of the rule from [2], the cut-reduction case for
the (quasi-)transitivity rules becomes simpler, without the need for a 4cut-style rule.
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For the left premiss, we need to show that for any n € setx the structural rule Ry, is
admissible in nK + &, . The right premiss is obtained by induction on proof height.
For direction 3 = 4, we need to show that for n € compy, the rules Oy, and $ya—1)
are derivable in nK + <©ux by induction on the definition of compy. As a matter of
example, if n € comp,,; and n = i + j — 1 for some i,j € comp,, by induction
hypothesis, G4i-1) and Oy are derivable, hence Ok, can be shown derivable as follows:
. T{OA [An [ [ 1. 4] 1]}
y
o "T{OA, [AL ... [Aii1, 0A [ ... [Airja] .- ]] -]}
43i-1)
T{OA, [Ar, [ [Dirya] 11}
Finally, the direction 4 = 1 is simply stating the soundness of rules in nK + $ux.

We conjecture the approach used here of propagating formulas ©A to ease the re-
quirement of completion given in [4] could be generalised to general path axioms.
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